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Abstract

Although it is commonly assumed that rule-based
models generalize more effectively than do connectionist
models, the comparison is often confounded by pitting
hand-written rules against learned connections. Three
case studies from cognitive development show that,
under the constraint that both types of models learn their
representations from equivalent examples, generalization
is consistently superior in connectionist models.

Generalization Problems
A significant part of the ongoing debate between rule-
based and connectionist modeling in psychology has
focused on the ability to generalize. A common claim
from supporters of the classical, symbolic approach is
that rule-based models are superior because they
generalize more effectively than do connectionist
models (Ling & Marinov, 1993; Pinker, 1997; Marcus,
1998). Generalization is considered important by most
modelers because it distinguishes understanding of a
problem from mere memorization of solutions.

The generalization ability of rules is often enhanced
by the use of variables that can be bound to any number
of objects or events. Consider the following rule,
written in Common Lisp for a production system
program. It generates correct responses on some
Piagetian conservation of number problems:

((response more ?x ?y)
 (and
  (initially-same-number ?x ?y)
  (or (add1 ?x)
        (subtract1 ?y))))

The rule says to conclude that row x has more items
than row y if the two rows initially had the same
number of items and if one item was subsequently
either added to row x or subtracted from row y. It has
plenty of generality because the variables x and y can be
bound to any rows with any number of items. It could
be made even more general by adding a third variable
n, representing the number of items added or
subtracted.

More generally, a rule can be defined as a conditional
statement in which conjunctively and disjunctively
connected conditions, if verified as true, produce a set
of conjunctively connected conclusions. Each condition
and conclusion is a proposition that can be stated in

predicate-argument form, where arguments can be
constants, variables, or other propositions.

Leaving aside the issue of whether people actually
generalize as well as such rules do, the claim has
commonly been made that connectionist models rarely
learn to generalize that well. Indeed, this argument
seems to have been accepted by many connectionists
(e.g., Anderson, 1995), and is at least partly responsible
for the many attempts to improve generalization in
neural network learning (e.g., Reed & Marks, 1995).

However, closer inspection reveals a serious
confound in this argument. The symbolic rules are often
written by hand, or perhaps merely alluded to, while the
neural network learns its own connection weights by
processing examples. The purpose of this paper is to
remove this confound between representation and
learning by requiring both types of model to learn their
representations from equivalent examples. It is already
well known that an alternate method of removing this
confound, by hand-designing neural networks to
explicitly implement rules and variables, also produces
excellent generalization (Shastri, 1995).

The learning constraint proposed here is reminiscent
of the developmental tractability constraint proposed by
Klahr (1984). In discussing cognitive development,
Klahr argued that any two plausible, consecutive
developmental states must be integrated in a transition
theory that can transform one state into the other.
Similarly, and a bit more generally, I propose a
constraint that acquired knowledge representations,
whether rules or weight vectors, must be learned by a
model in order to be considered plausible. Knowledge
representations that are instead hypothesized to be
produced through biological evolution may be dealt
with by hand designing rule-based and connectionist
models as noted earlier, or even more ambitiously, by
simulated evolution. Covering both inherited and
acquired representations is the more general principle
that other, non-representational features must be held
constant when assessing generalization ability.
Otherwise claims about superior generalization ability
may be confounded with acquisition issues and possibly
other differences.



Choice of Algorithms and Domains
A systematic test of generalization under a learning
constraint should eventually involve many algorithms
and problem domains. To begin this process, this paper
compares one leading connectionist algorithm to one
leading rule-learning algorithm in three different
domains of cognitive development.

One of the most frequently used connectionist
algorithms in cognitive development, and the principal
one used in my laboratory, is cascade-correlation (CC).
CC creates feed-forward networks by recruiting new
hidden units that correlate well with network error and
installing them in cascaded layers (Fahlman & Lebiere,
1990). It has been used to simulate a wide variety of
cognitive developmental phenomena, including
conservation (Shultz, 1998), seriation (Mareschal &
Shultz, 1999), the balance scale (Shultz, Mareschal, &
Schmidt, 1994), shift learning (Sirois & Shultz, 1998),
pronoun acquisition (Oshima-Takane, Takane, &
Shultz, 1999), infant familiarization to rule-governed
sentences (Shultz & Bale, 2001), and integration of the
concepts of velocity, time, and distance for moving
objects (Buckingham & Shultz, 2000).

Choosing an equivalent rule-learning algorithm
encounters the problem that there are not all that many
successful rule-based models of cognitive development,
in the sense of implementing developmental transitions.
A good case can be made that the largest number of
successful rule-based developmental models have been
achieved by the C4.5 algorithm (Quinlan, 1993) and its
immediate predecessor ID3 (Quinlan, 1986). These
include models of English past tense morphology (Ling,
1994; Ling & Marinov, 1993), the balance scale
(Schmidt & Ling, 1996), grammar learning (Ling &
Marinov, 1994), and reading (Ling & Wang, 1996).
There is also a simulation of non-conscious acquisition
of rules for visual scanning of a matrix (Ling &
Marinov, 1994), and numerous applications in
engineering and decision support (Quinlan, 1993).
Among alternative symbolic rule-learning algorithms
applied to the same phenomenon, the balance scale,
C4.5 produced an arguably superior model.

C4.5 learns to classify examples described with
features and values by forming a smallish decision tree
that can be converted into production rules. It is a
greedy (i.e., non-backtracking) algorithm that
repeatedly finds the most informative feature with
which to classify so far unclassified examples.

There are a number of intriguing similarities between
C4.5 and CC. Both algorithms use supervised learning
of examples, focus on largest current source of error,
gradually construct a solution based on what is already
known, and aim for a small solution that generalizes
well. In this paper, I report on generalization
performance of the CC and C4.5 algorithms on the
three problems of conservation acquisition, number

comparison, and infant familiarization to sentences in
an artificial language.

Conservation Acquisition
A recent CC model of conservation acquisition focused
on Piaget’s conservation of number problems (Shultz,
1998).  In one version of these problems, a child first
agrees that two rows have the same number of items,
and is then asked which row has more after one of the
rows is transformed, for example, by compression.
Children below about six years of age typically judge
the longer row to have more items, whereas older
children correctly judge the rows to remain equal. The
vast psychological literature on conservation (over 1000
studies) has produced a number of well-replicated
regularities. Among them are acquisition (with a sudden
jump in performance), the problem size effect (with
better performance and earlier success on small number
problems than on large number problems), length bias
in pre-conservation children (choosing the longer row
as having more), and the screening effect (with young
children giving a correct answer to a screened
transformation until the screen is removed).

CC networks were trained on 420 examples of
number conservation problems of row lengths and
densities ranging between 2 and 6, with number of
items being the product of length and density. Using
inputs coding the length and density of each row, both
before and after the transformation, the identity of the
transformed row, and the identity of the transformation
(addition, subtraction, compression, and elongation),
networks learned to judge whether the rows had equal
numbers or not, after the transformation. Both equal
and unequal initial rows were included. Length and
density were coded as real numbers, and the other
inputs were coded in a localist binary fashion. There
were 100 test problems of the same type, not used in
training, to assess generalization performance.

C4.5 was trained with the same examples, learning to
classify them into three numerical judgments: one row
has more, the other row has more, or both rows have
the same. C4.5 was equipped with ability to deal with
continuous, as well as qualitative inputs,1 and to use the
option for information gain ratio, which is generally
superior to simple information gain (Quinlan, 1993).

Proportions correct on training and test problems,
respectively, were 1.0 and .95 for 20 CC networks, and
.40 and .35 for 20 C4.5 trees. For both algorithms,
generalization performance (on the test problems) was
just a bit worse than performance on the training
problems; but training and generalization performance
was much higher for CC than for C4.5. If the learned

1 C4.5 finds the gain ratios for each possible cutoff on a
continuous feature and then chooses the partition of examples
with the highest gain ratio in the usual way.



knowledge representation is inadequate, it does not
afford good generalization. This makes a pure test of
generalization ability difficult. To control for learning
success, proportion correct on the test problems can be
divided by proportion correct on the training problems,
creating a generalization ratio. This ratio is .95 for CC
and .87 for C4.5.

Because a failed model is not by itself very
meaningful, I adopted the strategy of changing the input
coding to C4.5 until learning was successful and then
evaluating what is required to learn in terms of both
theoretical plausibility and psychological coverage.

Following the lead of other C4.5 modelers (Schmidt
& Ling, 1996), I coded the length and density input in
relational, rather than absolute terms. For example, was
the first row longer or shorter or the same length as the
second row? Although this relational coding produced
100% success on training and test problems, it created
knowledge representations that are unlike any that have
been reported with children. For example, an English
gloss of one of the smaller rules is: If the first row is
longer than the second row before the transformation,
and shorter than the second row after the
transformation, then the first row has more items.

Because of this exclusive focus on relative length and
density of the rows, there was never any reference to
information on the transformation or the identity of
transformed row. Nor could the C4.5 models cover any
of the various psychological regularities. This is in
distinction to both the CC model and children,
characterized by a shift from concern with how the
rows look to the nature and identity of the
transformation. The CC model also covers all of the
psychological regularities mentioned: sudden jump in
acquisition, problem size effect, length bias, and the
screening effect. Thus, although relational input coding
can produce perfect learning and generalization in C4.5,
it creates implausible knowledge representations and
fails to cover the psychological data. In contrast, the CC
model can learn and generalize effectively from raw
input coding, acquire knowledge representations that
are similar to those seen in children, and cover the
psychological regularities.

Number Comparison
One of the most basic of numerical skills is that of
comparing the size of two numbers. Prominent
psychological regularities in number comparison are the
min and distance effects. The min effect refers to earlier
success and quicker performance the smaller the
smaller of the two numbers. The distance effect refers
to earlier success and quicker performance the larger
the absolute difference between the two numbers.

My simulations focus on pairs created from the
integers 0-9. In a study of interpolation, a randomly
selected 50 pairs comprised the training set and the

remaining 50 pairs comprised the test set. The integers
were coded as real numbers, and there were three
discrete output classes, including ties. Mean proportion
correct on training and test problems, respectively, over
20 runs was 1.0 and 1.0 for CC and .75 and .66 for
C4.5. The mean generalization ratio of test correct to
train correct was 1.0 for CC and .89 for C4.5. Not only
did CC learn the problem and generalize more
effectively than did C4.5, but only CC captured the min
and distance effects.

Knowledge representation analysis revealed a
sensible solution for CC networks that involved
positioning a hyper-plane near the diagonal axis
designated by x = y, where x and y are the two numbers
being compared. The fact that this hyper-plane is
anchored at the origin and drifts away from the ideal
diagonal at the higher values generates the min effect.
The soft boundary created by the sigmoid activation
function in CC networks produces the distance effect.
In contrast, the rules learned by C4.5 made no
psychological sense, e.g., If x > 5 and y > 7, then x > y.

Another coding trick employed by C4.5 modelers
uses the difference between two numbers that are being
compared (Schmidt & Ling, 1996). Mean proportions
correct on training and test problems, respectively, were
.902 and .875 for C4.5 difference coding in the
interpolation experiment. This is an improvement, but
again there is no coverage of the min and difference
effects, and the rules are psychologically inappropriate,
e.g., If difference > 1, and y > 2, then y > x.

In a study of extrapolation, the models were trained
on pairs of the integers 0-4 and tested on pairs of the
integers 5-9. There is no variation in C4.5 performance
here because training patterns are not randomly selected
for each run. Training and test results are shown in
Table 1. Again, the CC algorithm learns and generalizes
better than the C4.5 algorithm, whether input coding
uses standard raw integers or differences.

Table 1: Proportion correct and generalization ratio for
extrapolation.

Algorithm/coding Train Test Ratio
CC 1.00 .99 .99
C4.5/standard .56 .40 .71
C4.5/difference .76 .40 .53

In conclusion, C4.5 does not learn or generalize well
with either standard or difference coding of input on
number comparison problems. It also fails to cover the
min and difference effects, and the rules it learns are
psychologically implausible. The only apparent way to
get C4.5 to learn appropriate number comparison rules
and generalize effectively is to build those rule
conditions into the input coding, in which case there is
nothing to learn. In contrast, CC learns and generalizes



well, while covering min and difference effects and
generating reasonable knowledge representations, and it
does so with raw numerical inputs.

Infant Familiarization to Sentences
The third case study concerns infant familiarization to
sentences in an artificial language. A recent paper in
this area has been of particular interest because it
claimed to have data that could only be accounted for
by rules and variables (Marcus, Vijayan, Rao, &
Vishton, 1999). That study found that 7-month-olds
attend longer to sentences with unfamiliar structures
than to sentences with familiar structures. Particular
features of the experimental design and some
unsuccessful neural network models allowed the
authors to conclude that unstructured neural networks
cannot simulate these results. Several unstructured
connectionist models have since disproved that claim
(Shultz & Bale, 2001), but the current focus is on
generalization ability of connectionist and rule-based
models that learn representations of these sentences.

The present simulations focus in particular on
Experiment 1 of Marcus et al. (1999). In this
experiment, infants were familiarized to sentences with
an ABA pattern, for example, ga ti ga or li na li. There
were 16 of these ABA sentences, created by combining
four A words (ga, li, ni, and ta) and four B words (ti,
na, gi, and la). Subsequently, the infants were tested
with two novel sentences that were consistent with the
ABA pattern (wo fe wo, and de ko de) and two others
that were inconsistent with ABA in that they followed
an ABB pattern (wo fe fe, and de ko ko). There was also
a condition in which infants were familiarized instead
to sentences with an ABB pattern. Here the novel ABB
sentences were consistent and the novel ABA sentences
were inconsistent with the familiarized pattern. Infants
attended more to inconsistent than to consistent novel
sentences, suggesting that they were sensitive to
syntactic properties of the sentences.

For consistency, I focus on a particular CC model of
these data (Shultz & Bale, 2001). In this model,
sentences were coded by real numbers representing the
sonority (vowel likeness) of particular consonants or
vowels. An encoder version of CC was used, enabling
the network to learn to reproduce its inputs on its output
units. Deciding on whether a particular sentence is
correctly rendered in such networks is somewhat
arbitrary. A more natural index of performance on
training and test sentences is mean error, which is
plotted in Figure 1. Test patterns inside the range of the
training patterns were the same as those used with
infants. Two additional sets tested extrapolation by
using sonority values outside of the training range, by a
distance that was either close or far. The greater error to
inconsistent sentences corresponds to the attention
difference found with infants. The fact that this

consistency effect extends to patterns outside of the
training range reveals substantial extrapolation ability
in these networks. As well, the CC networks exhibited
the typical exponential decrease in attention to
familiarization stimuli that are found with infants.

Figure 1:  Mean error for CC networks simulating
infant interest in consistent and inconsistent test

sentences.

I did C4.5 simulations in several different ways to try
to achieve successful learning and generalization. The
initial attempt involved a literal symbolic encoding of
each word in the sentences. For example, the word ga
was coded as the symbol ga. Because there was only
one output class when only one type of sentence was
used as in the infant experiment (ABA or ABB), the
resulting decision tree had only one leaf labeled with
the syntactic class. In other words, if exposed only to
ABA sentences, then expect more of the same. This is
not really a rule and it captures none of the gradual
characteristics of familiarization in infants. There is no
variation in any of these C4.5 runs of the familiarization
problem because each run uses all of the examples,
rather than a random selection of examples.

The next C4.5 simulation added the 16 ABB
sentences to the examples to be classified, in order to
ensure that rules would be learned. This effectively
changes the experiment to one of discrimination rather
than familiarization. In this case, C4.5 focused only on
the third word, concluding that the ABA syntax would
be signaled by ga, li, ni, or ta as the third word, whereas
the ABB syntax would be identified by ti, na, gi, or la
as the third word. This is a sensible focus because the
third word does distinguish the two syntactic types,
producing a training success rate of 1.0, but it does not
reflect Marcus et al.’s (1999) assumptions about infants
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comparing the first and third words in each sentence.
Moreover, because the test words are novel, this
solution does not enable distinction between consistent
and inconsistent test sentences. The generalization
success rate is 0, as is the generalization ratio.

To obtain successful generalization with this kind of
literal symbolic coding in C4.5, it is necessary to code
the input relationally, explicitly representing equality of
the first and second words, the first and third words,
and the second and third words. When the first and
third words are the same, then one has an ABA
sentence; when the second and third words are the same
then one has an ABB sentence. This allows perfect
generalization to novel words, but the problem is that
C4.5 can learn this relation perfectly with only one
example of each pattern because the entire solution is
explicitly presented in the inputs. Infants presumably
require more examples than that to distinguish these
syntactic patterns, reflecting the fact that their inputs
are not coded so explicitly and fortuitously.

C4.5 was also trained with discrimination examples
coded on sonority values as in the CC model. This
model yielded 62.5% of training sentences correct, 0%
correct on ABA and ABB test sentences, and a
generalization ratio of 0. Moreover, the rules learned by
this model were rather odd, e.g., If C1 < -5, C3 < -5,
and C2 > -6, then syntax is ABA, where C1 refers to the
consonant of the first word, C3 is the consonant of the
third word, etc.

In contrast, the knowledge representations learned by
the CC model were psychologically interesting. The
hidden units were found to use sonority sums of the
consonant and vowel to represent variation in sonority.
This was achieved first in the duplicated-word category
and next in the single-word category. This hidden unit
representation was then decoded with similar weights to
outputs representing the duplicate-word category.

Summarizing the results of the familiarization
simulations, C4.5 did not show gradual familiarization
effects. When the problem was changed to a
discrimination problem, C4.5 did not learn the proper
rules and did not generalize effectively. With explicit
relational coding, C4.5 learns and generalizes perfectly,
but it requires only two examples. When trained with
sonority codes, C4.5 does not master the training
examples, learns inappropriate rules, and does not
generalize. In contrast, CC learns and generalizes well,
both inside and outside of the range of the training
examples, and acquires sensible knowledge
representations.

Discussion
When learning of knowledge representations is
required, CC reveals a number of advantages over C4.5:
familiarizing to a single category, learning both simple

(number comparison) and difficult (conservation)
problems, finding structural relations that exist
implicitly within training examples, learning rule-like
functions that are psychologically plausible, covering
psychological effects, and generalizing to novel
examples, even to the extent of extrapolating outside of
the training range. A pure comparison of generalization
is difficult because of differences in learning success.
However, comparison of generalization ratios that scale
test performance by training performance, to control for
learning success, consistently showed an advantage for
CC over C4.5. This advantage occurred both with
identical input coding for the two algorithms and with a
variety of coding modifications that made it easier for
C4.5 to learn.

Some of the generalization success of CC networks
can be traced to the use of analog coding of inputs. In
analog codes, the amount of unit activation varies with
the intensity of the property being represented. Analog
codes are well known to facilitate learning and
generalization in artificial neural networks (Jackson,
1997), and exploratory comparative simulations suggest
that they were important determinants of the present
results. Their use in some of the present simulations can
be justified by psychological evidence that people also
employ analog representations, for example, of number.

Analog coding is not the entire story, however,
because of two considerations. One is that not all of the
CC inputs were analog. Some of the inputs to
conservation problems that are essential to mature
knowledge representations are coded in a discrete
binary fashion. A second qualifier is that analog input
codes were insufficient to allow successful learning and
generalization in C4.5 models, even though C4.5 is
equipped to deal with continuous inputs.

For a learning system to generalize effectively, it
must of course learn the right sort of knowledge
representation. This is why the present results show a
close correspondence between success on the training
examples and generalization performance. It was
typical for performance to be slightly worse on test
problems than on training problems, although
generalization was considerably worse in some C4.5
runs, as indicated by low generalization ratios.

Because connectionist models generalized better than
rule-based models under the learning constraint in three
different domains, the argument that rule-based models
show superior generalization is highly suspect.
However, it is reasonable to ask whether connectionist
models invariably generalize better than rule-learning
models. Would this finding hold up in different
domains and with different learning algorithms?
Obviously, more research is needed, but we are now
beyond facile comparisons of hand-written or imagined
rules to laboriously learned connections.



Choice of algorithm is a key issue because both
symbolic and neural algorithms may vary considerably
in their ability to learn and generalize. Certainly, CC
benefits from its ability to learn difficult problems that
are beyond the ability of other neural learning
procedures and its tendency to build the smallest
network necessary to master the problem on which it is
being trained. Likewise, C4.5 benefits from its use of
information gain to select the best feature on which to
partition unclassified examples. Both algorithms have
led the way in their respective class in producing
successful simulations of cognitive development.
Nonetheless, it is important for other algorithms of each
type to be tried. It is possible that other rule-learning
algorithms would have better success in finding more
abstract and thus more general knowledge
representations than C4.5 does. Although C4.5 is adept
at learning from examples, it seems unable to represent
those examples in anything more abstract than the
features used in their input descriptions. This limitation
could make learning and generalization difficult.

Finally, it is important to stress that generalization
ability should not be taken as the ultimate criterion on
which to evaluate different cognitive models. Surely, it
is more critical to determine whether a given model
generalizes like human subjects do. This is an issue that
has not yet been adequately addressed.
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