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Abstract

This paper reports an experiment that investigated the
influence of causal interpretation on acquisition and use
of two knowledge types about a static system: I-O
knowledge (instances of system states) and structural
knowledge (knowledge about causal relations within the
system). One group of subjects saw system states without
being informed about the causal nature of the material.
Another group saw the same states as switches and
lamps. It is assumed that the group without causal
interpretation can only acquire I-O knowledge. If I-O
knowledge is the predominant type when dealing with
small systems, then there should be no group differences
in a recognition task. Actually, the group with causal
interpretation discriminates much better between targets
and distractors, but with longer RTs. This is interpreted
in terms of structural knowledge acquired by the group
with causal interpretation, which was used to reconstruct
system states in cases of doubt. Results of a task where
subjects had to judge single causal relations support that
interpretation, but also indicate that the knowledge about
effects is probably not represented in an explicit,
symbolic form. An ACT-R model that uses associations
between events as a subsymbolic form of structural
knowledge reproduces the data well. Thus, data and
model support the significance of I-O knowledge but
also shed some light on the role and the development of
structural knowledge.

One central question in the psychological research on
complex dynamic systems refers to the knowledge that
is used for controlling a system. One important aspect
of that question refers to the content of the acquired
knowledge. Subjects may acquire structural knowledge,
defined as general knowledge about the variables of a
system and their causal relations. They may as well
acquire input-output knowledge (I-O knowledge),
which represents instances of input values and the
corresponding output values.

There is evidence for the influence of both types of
knowledge on performance in system control, but
currently many authors emphasize the role of I-O
knowledge, particularly when dealing with small
systems like the "Sugar Factory" (a dynamic system
with one input and one output variable, connected by a
linear equation; Berry & Broadbent, 1988). Computa-
tional models developed on the basis of Logan's
Instance Theory (Dienes & Fahey, 1995) or ACT-R

(Lebiere, Wallach & Taatgen, 1998) demonstrate the
sufficiency of I-O knowledge for the control of the
"Sugar Factory". The strategy of relying on I-O know-
ledge seems to be preferred by most subjects, even in
the control of more complex systems. However, in
systems of at least six variables, high performance is
usually associated with structural knowledge (Funke,
1993; Vollmeyer, Burns & Holyoak, 1995).

A second aspect of the question as to what knowledge
is used in system control refers to its status as explicit
or implicit knowledge. In an experiment with the
"Sugar Factory", Dienes and Fahey (1998) found
stochastic independence between the solution of studied
control problems and the recognition of the same situa-
tions as studied. The authors concluded that memory for
the situations was implicit. This result extends the
common finding of dissociations between recognition
and completion tasks (e.g. Tulving & Hayman, 1993) to
the domain of system control.

In the present paper these questions were investigated
by using stimuli that can be either interpreted as states
of a system or simply as spatial patterns. The rationale
of the experiment is that learning of instances does not
depend on the causal interpretation of stimuli. Con-
sequently, if knowledge about instances (I-O know-
ledge) is the main knowledge type learned, there should
be no effect of causal interpretation on recognition of
system states. On the other hand, if structural know-
ledge is learned additionally, then causal interpretation
should have positive effects, particularly in a causal
judgment task.

The assumptions about the two knowledge types are
explicated with a computational model based on the
ACT-R theory (Anderson & Lebiere, 1998). The model
reproduces the results of the experiment quite well, and
can be considered being an explanation for the stochas-
tic independence between completion and recognition
tasks.

Experin ent
The significance of [-O knowledge and structural
knowledge was studied with a system consisting of four
lamps operated by four switches. Figure 1 shows a
screenshot with the effects of the switches mapped (the
arrows were not visible for the subjects). Each switch



affects one or two lamps. Two of the effects are
negative, which means that the corresponding lamp is
switched off when the switch is turned on.
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Figure 1: The system used in the experiment.
The arrows were not visible for the subjects;
d: on relation, L. off relation.

Two tasks were used, each more sensitive to a different
type of knowledge: A recognition task - easiest to be
done with I-O knowledge, and a causal judgment task -
easiest to be done with structural knowledge. Addition-
ally, a pattern completion task was administered, which
is not expected to be particularly sensitive to one know-
ledge type.

In the speeded recognition task subjects saw ten
possible and ten impossible system states two times
each, and had to decide if they had seen the state in the
learning phase or not. The items of the speeded judg-
ment task were pictures of the switches and lamps with
one switch and one lamp highlighted. Subjects had to
decide if there was a causal relation between the
highlighted elements. The 16 possible combinations
were shown twice. In the completion task subjects were
shown eleven arrays of switches or lamps and asked to
complete the missing parts, i.e. complete the lamps
when switches were shown and vice versa.

Two factors were varied between subjects: (1) the
possibility to interprete the pictures of system states
shown in the learning phase as causal, and (2) the
subject's activity, i.e. if the system states were either
observed, or produced by operating the switches. I will
focus on the effects of the first factor (that were the

strongest ones, anyway), and report the data of the two
groups who observed the system states in the learning
phase, either with causal interpretation (ci), or without
causal interpretation (nci). Each of the groups consisted
of 12 subjects.

Other factors were varied within subjects: (1) the
number of presentations of each state in the learning
phase (1-2 presentations vs. 3-5 presentations), and (2)
the number of switches that were "on" in each item of
the recognition task (1 switch on vs. 3-4 switches on).

The experiment started with a learning phase where
subjects saw 40 system states in intervals of four
seconds. Each possible state of the system was shown at
least once. The group without causal interpretation (nci)
was told that they would see spatial patterns, which
they should memorize. The group with causal interpre-
tation (ci) was informed that the patterns were states of
a system of switches and lamps.

Three minutes after completion of the learning phase
the recognition task was administered followed by
another 25 system states. Next, subjects worked on the
completion task. Then the subjects of the group without
causal interpretation were debriefed about the causal
nature of the stimulus material. After that the judgment
task was provided, followed by two other tasks that are
not reported here.

Given the assumption that knowledge about the
system is primarily stored as specific instances, the
factor "causal interpretation" should have no effects on
performance in the recognition task. If, however, sub-
jects acquire structural knowledge - which is expected
only in the group with causal interpretation - that group
should outperform the nci group, particularly in the
judgment task.

As a measure of performance in the recognition and
judgment tasks, discrimination indices P, were calcu-
lated according to the Two-High-Threshold-Model
(Snodgrass & Corvin, 1988). A discrimination index of
1 indicates perfect discrimination; a value of 0 indicates
random performance.

Table 1: Discrimination indices for two tasks

ci nci
Recognibn M=048 M=030
5=023 5=022
causaljnydgment M=055 M=0.17
5=0.18 5=023

Table 1 shows means and standard deviations of these
indices. In both tasks the group with causal inter-
pretation is significantly better (F | = 10.76, p <.01),
and there is an interaction between task and group
(F 122="7.26, p<.05). The ci group is better at judging
causal relations than at recognition; for the ci group the
reverse is true. Latencies for hits are longer in the group



with causal interpretation (ci: 2250 ms, nci: 1493 ms).
The fact that the variance is also significantly higher in
the ci group points to the use of different strategies: If a
system state could not be retrieved in the recognition
task, subjects of the ci group might have tried to
reconstruct the state by using knowledge about the
effects of the switches. That would mean that subjects
used both, I-O knowledge and structural knowledge.

This interpretation is supported by the effects of the
within-subjects factors on recognition performance
(Figure 2, left panel). If the reconstruction hypothesis is
true, then there should be an effect of the number of
switches on in the ci group, because the reconstruction
process is harder the more switches have to be consi-
dered. Actually, a significant interaction between group
and number of switches on was found in the proportion
of hits (F 1,2, = 6.13, p < .05). States with three or four
switches in on position are particularly badly recog-
nized by the subjects of the ci group. On the other hand,
in the group without causal interpretation the influence
of number of presentations is higher (interaction
marginally significant: F ; 5, = 3.63, p = .07). All this
supports the assumption that the group with causal
interpretation used I-O knowledge and structural know-
ledge in both tasks.

Further inferences about the application of one vs.
two knowledge types can be drawn from contingency
analyses between the tasks. Since the mapping between
the items of the recognition task and the items of the
judgment task is ambiguous, I calculated contingencies
between recognition and completion.

If there is only one (explicit) knowledge type, items
that were completed correctly should also be recognized
as studied. For two knowledge types, the contingency
prediction is less clear. If each task is solved with
different knowledge, stochastic independence between
the tasks should be the consequence.

The items of the completion task were entered into
contingency tables depending on their solution and their
recognition (e.g. Item 1 was solved correctly and not
recognized as studied). The entries were summed over
all subjects of each condition and over all items. Empi-
rical contingencies, measured by Ap, were compared
with maximum contingencies that can result with the
given marginal distributions'. In the ci group the empi-
rical contingency between recognition and correct
completion is 0.17. This is considerably lower than the
maximum of 0.65. In the nci group the contingency is
0.41, which is much closer to the maximum of 0.53 in
that group. Thus, in the group with causal interpretation
the solution of completion items does not depend on
correct recognition of these items as studied, whereas in

' The maximum possible memory dependence as suggested
by Ostergaard (1992) could not be calculated because only
studied items were used in the completion task.

the group without causal interpretation a moderate
degree of dependency was found between the two tasks.
Again, the results are compatible with the assumption
that the nci group used only one type of knowledge,
whereas the ci group used two types.

D iscussion

Overall, the results support the assumption that causal
interpretation enabled subjects to gain an additional
type of knowledge. This raises the question about the
nature of that knowledge. In the introduction I hypo-
thesized that it should be structural knowledge. But
there is one result that is problematic for this conclus-
ion: Since structural knowledge is ideal for solving the
judgment task it is surprising that the mean latency for
hits is as long as 2234 ms (see also Schoppek, 1998 for
similar results). If subjects tried to retrieve structural
knowledge right away, the latency should be much
shorter. A possible explanation is that most subjects try
to use 1-O knowledge first and use knowledge about
effects only after retrieval of relevant I-O knowledge
fails. The reason for that might be that knowledge about
causal relations is not represented explicitly in symbolic
form, but rather in form of associations between events.
In the ACT-R theory (Anderson & Lebiere, 1998),
associations between declarative memory elements and
their baselevel activations are described as the sub-
symbolic level of declarative memory. This level is
implicit in the sense that it affects symbolic processing
(e.g. retrieval) without being directly accessible. In the
next section I describe a computational model that uses
the distinction between symbolic and subsymbolic level
to explain the effects of causal interpretation.

ACTR M odel

In order to test how the above interpretation can
reproduce the data, I developed an ACT-R model that
simulates the learning phase, the recognition task, and
the judgment task. There are two versions of the model.
One of them entails additional production rules for
modeling causal interpretation. These rules reconstruct
a system state when no relevant memory representation
of the state can be retrieved. The state is reconstructed
on the basis of associations between events.

In the learning phase a new declarative element
(called chunk in ACT-R) is created for each system
state and pushed on the goal stack. After processing the
goal it represents a system state with its slots holding
the arrays of switches and lamps. These state chunks
are the basic units of [-O knowledge. Also in each
cycle, a change-image is created as a subgoal, repre-
senting the changes between the previous and the
current system state. Most of the change-images are not
strong enough to be retrieved later on, but during goal
elaboration associative weights are learned between



switch- and lamp-events (e.g. between the events
"Switch A turned on" and "Lamp 1 turns dark"). After-
wards these associations are used to reconstruct system
states in the condition with causal interpretation. No
structural knowledge is explicitly induced, because
otherwise the model would predict much shorter
response times in the judgment task.
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Figure 2: Experimental (left) and model (right) results

In the recognition task both model versions try to retrie-
ve an instance similar to the probe. The constraints for
retrieval are either “retrieve a chunk that has the probe’s
combination of switches in its switches slot” (retrieval
by input), or “retrieve a chunk that has the probe’s
combination of lamps in its lamps slot” (retrieval by
output). The model has a bias towards using the tactic
of retrieval by input. Partial matching is turned on,
which means that not only perfectly matching instances
can be retrieved, but also instances that are similar to
the retrieval constraints. If retrieval fails, the version
without causal interpretation guesses, the other version
starts the reconstruction process. Reconstruction is
based on the lamp-events that are most strongly
activated by the switch-events shown in the probe
("switch on"). The probability of false reconstructions
rises with the number of switches that are on - an effect
that explains the bad recognition performance under
condition ci & 3-4 switches.

I simulated two samples with 24 cases each’. Some
results are shown in the right panel of Figure 2. In both
simulated between subject conditions recognition per-
formance depends more on the number of presentations
as compared to the real subjects. But the interaction
between number of switches and causal interpretation is
well reproduced by the model. In general, the model
overestimates recognition performance. This effect is

% Parameter values were as follows: partial matching=on,
mismatch penalty=2.5, baselevel learning=0.5, retrieval thres-
hold=0.75, parameter learning=off, associative learning=3.0,
activation noise s=0.5, expected gain noise s=0.5, latency
factor=2.5. The source code of the model is available at
www.uni-bayreuth.de/departments/psychologie/cogsciO1.html

mainly due to the excellent recognition of the
frequently shown system states. Latencies for hits are
very close to the data: 2314 ms in the simulated ci
group and 1541 ms in the simulated nci group (note that
the latency factor was fitted for the nci group only).

After fitting parameters for the recognition task, the
model was extended with a few production rules to
solve the causal judgment task. In that task the model
tries to retrieve a diagnostic instance appropriate to con-
firm the causal relation. For example, when the item
requires judging the causal relation between Switch A
and Lamp 3, the model tries to retrieve a chunk that
represents the system state with Switch A as the only
switch on. Assume the model retrieves the appropriate
state (Switch A on, Lamp 2 on), it will produce the
answer “no”. If no diagnostic state can be retrieved, the
model reconstructs the state in the same way as in the
recognition task.

In the simulation with this part of the model, I
assumed that the judgment task was done right after the
learning phase. Recall that the groups of subjects that
have been discussed so far did the judgment task later
in the experiment. Therefore, the simulation results
were compared to a group of subjects (N=12) who did
the judgment task in the first place. That group was
informed about the causal interpretation of the stimuli.

The model matches the subjects' data quite close
without fitting any parameters (Figure 3). Mean laten-
cies for hits were 2305 and 2234 ms in the model's and
subjects' data, respectively.
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Figure 3: Proportions of correct answers in the
judgment task. A2P through D1P are the five "on"
relations of the system, AIN and D3N the two "off"

relations. (A2P: Switch A — Lamp 2 - positive)

G eneralD iscussion

Model and data support the view that I-O knowledge is
the primary type of knowledge used when dealing with
a small system. But longer latencies, together with



better recognition in the group with causal interpre-
tation point to the use of an additional type of know-
ledge. It has been modeled as subsymbolic associations
between events, used to reconstruct a mental image of
the system state in question.

The results of the group with causal interpretation
parallel the findings of Dienes & Fahey (1998), but the
interpretations are slightly different. Dienes and Fahey
assume that subjects learn a lookup-table of system
states and conclude from their data that this table is
stored in implicit memory. The lookup-table is similar
to I-O knowledge. The difference is that in the present
conception [-O knowledge is always explicit, and a
second type of knowledge is assumed — subsymbolic
associations between events. In this interpretation it is
the subsymbolic knowledge that would be considered
implicit.

Applying the distinction between symbolic I-O know-
ledge and subsymbolic associations between events to
the "Sugar Factory" could explain the results of Dienes
& Fahey (1998). If subjects used I-O knowledge about
past situations in the recognition task and associations
between events in the control problems, stochastic
independence between the two tasks could be the
consequence. The explanatory potential of the subsym-
bolic level of ACT-R for implicit memory phenomena
has also been demonstrated by Taatgen (1999) with a
model of word recognition and completion. In his
model it is the dynamics of baselevel learning rather
than associative learning that accounts for dissociations.

The present research yielded effects that are similar to
those known from other paradigms. It is a common
finding that providing additional information about
stimuli enhances memory or other kind of performance,
e.g. in classification learning (Nosofsky, Clark, & Shin,
1989), Schema acquisition (Ahn, Brewer, & Mooney,
1992), or text comprehension (Bransford & Johnson,
1973; Kintsch & van Dijk, 1978). Also the finding that
most subjects spontaneously rather use I-O knowledge
or knowledge about specific instances than using
structural knowledge or rule knowledge has parallels in
these paradigms. Nosofsky et al. (1989) found that even
simple rules defining a concept were only used when
subjects were explicitly told to do so. Ahn et al.’s
(1992) subjects used the experimentally provided
background knowledge only when they were engaged
in tasks requiring the active use of that knowledge.

An important question is at what point in the whole
process the causal interpretation effect arises. The
present model assumes that the associations between
events are learned incidentally in both conditions, and
the effect occurs during recall, when only the ci
subjects use this knowledge. This assumption shall be
tested in future experiments.

The next step in this research is modeling the comple-
tion task to test if the model really predicts the effect of

causal interpretation on the contingency between
recognition and completion tasks. Further research is
also necessary to explore if the effects of causal
interpretation can be generalized to similar tasks. If the
effects can be confirmed, the model provides an
interesting basis for a more general theory about
implicit memory phenomena.

R eferences
Ahn, W. Brewer, W. F., & Mooney, R. J.
(1992). Schema acquisition from a single
example. Journal of Experimental Psychology:

Learning, Memory, and Cognition, 18, 391-412.

Anderson J.R., & Lebiere C. (1998). The atomic
components of thought. Mahwah, NJ: Lawrence
Erlbaum Associates.

Berry D.C., & Broadbent D.E. (1988). Interactive tasks
and the implicit-explicit distinction. British Joumal
ofPsychology, 79,251-272.

Bransford, J.D. & Johnson, M.K. (1973). Consider-
ations of some problems of comprehension. W.G.
Chase (Ed.), Visual inform ation processing. Orlando,
FL: Academic Press.

Dienes Z., & Fahey R. (1995). Role of specific
instances in controlling a dynamic system. Joumalof
Experinental Psychology: Leaming, M emory, and
Cognition, 21, 848-862.

Dienes Z., & Fahey R. (1998). The role of implicit
memory in controlling a dynamic system. The
Quarterly Joumal of Experin ental Psychology, 51A,
593-614.

Funke J. (1993). Microworlds based on linear equation
systems: a new approach to complex problem solving
and experimental results. In G. Strube & K.F.
Wender (Eds.), The oognitdve psychology of
know ledge, pp. 313-330. Amsterdam: North-Holland.

Kintsch, W. & Dijk, T.A.van (1978). Toward a model
of text comprehension and reproduction. Psycho-
logicalReview , 85,363 -394.

Lebiere C., Wallach D., & Taatgen N. (1998). Implicit
and explicit learning in ACT-R. In F.E. Ritter & R.
M. Young (Eds.), Proceedings of the Second
European Conference on Cognitve M odellng
ECCM -98), pp. 183-189. Nottingham: Nottingham
University Press.

Marescaux P.-J., Luc F., & Karnas G. (1989). Modes
d’apprentissage selectif et nonselectif et conaissances
acquises au controle dun processus: Evaluation d un
modele simule. Cahiers de Psychologie Cognitive, 9,
239-264.

Nosofsky, R.M., Clark, S.E. & Shin, H.J. (1989). Rules
and exemplars in categorization, identification, and
recognition. Joumal of Experinental Psychology:
Leaming, M emory, and Cognition, 15,282 -304.

Ostergaard, A. L. (1992). A method for judging mea-
sures of stochastic dependence: Further comments on
the current controversy. Joumal of Experimental



Psychology: Leaming, M emory, and Cognition, 18,
413-420.

Schoppek W. (1998). Modeling causal induction. Paper
presented at the Fifth Annual ACT-R W orkshop 1998,
Camegie Melbn University, Pitsburgh, PA.
http://act.psy.cmu.edu/ACT/ftp/workshop/W orkshop
-98/Schoppek/quick index.html)

Snodgrass, J. G. & Corwin, J. (1988). Pragmatics of
measuring recognition memory: applications to
dementia and amnesia. Joumal of Experinental
Psychology: General 117, 34-50.

Taatgen, N. (1999). Learning without limits.
Groningen, The Netherlands: Universal Press of the
Rijksuniversiteit Groningen.

Tulving, E., & Hayman, C.G. (1993). Stochastic
independence in the recognition/identification para-
digm. European Joumal of Cognitive Psychology, 5,
353-373.

Vollmeyer R., Burns B.D., & Holyoak K.J. (1996). The
impact of goal specificity on strategy use and the
acquisition of problem structure. Cognitive Science,
20,75-100.



