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Abstract

Interactive behavior emerges from the interaction of
embodied cognition with task and the artifacts designed to
accomplish the task. The current study focuses on how
subtle changes in interface design lead to changes in the
cognition, perception, and action operations that compose
interactive behavior. The Argus Prime task is explained and
the nature of the modeling effort is discussed. Insights
obtained by exploring differences between model and
human performance in one aspect of the Argus Prime task
are presented.

Introduction
The Argus Prime simulated task environment (Gray, in
press) places subjects in the role of radar operators
whose job it is to assess the threat value of targets on a
radar display. Our goal is to determine the strategies
that people use in performing the task and to study how
these strategies change as a function of subtle changes
in interface design. Cognitive models are built that
implement these strategies at the embodiment level
(Ballard, Hayhoe, Pook, & Rao, 1997). Changes in
strategy that accompany changes in the interface are
interpreted as due to least-effort trade offs among the
cognitive, perceptual, and action elements of embodied
cognition. This work has implications for interface
designers of dynamic systems characterized by rapid
shifts of attention and time-pressured decision making
such as in air traffic controllers, emergency medical
systems, and nuclear power plant systems.

Our models are written using ACT-R/PM (Byrne &
Anderson, 1998) — an architecture of cognition that
enables us to capture the parallelism between cognition,
perception, and action. By getting the interactions right
at the embodiment level (approximately one-third of a
sec), we hope to reproduce process and outcomes all the
way up to the scenario level (each scenario requires 12-
15 min to complete).

In comparing our models to human performance, we
have been alternatively pleased and disappointed. It is
not uncommon for our models to match the overall
performance of our human subjects (at the 12-15 min
level) only to mismatch greatly at a finer level of
analysis.

When part of the model misfits its part of the data,
we attempt to base changes of the model on a
combination of two classic approaches. First, we
observe subjects and analyze action protocols of their
behavior. The action protocols include response times,
eye movements, and mouse movements. Second, we
introduce a small change to one part of the interface.
We then run the model on the two versions of Argus
and compare it s predictions with empirical data
collected from human subjects.

Subtle changes in interface design may result in large
changes in the strategies used to perform the task. For
example, in Argus Prime it is important to maximize
time on unclassified targets by, in part, minimizing time
spent on targets that have already been classified.
Hence, a change in interface design that varies the
display-based indication of a target s classification
status (classified or not classified) may have a profound
effect on the number and combination of cognition,
perception, and action operations used to perform
Argus Prime.

In this paper, we marshal both human and model data
to interpret the effect of interface changes on cognitive
as well as on perceptual-motor performance. We use a
broad brush to describe our task, current study, and
model. After discussing how well the model s
performance matched overall human performance, we
limit the rest of the paper to two subparts of the Argus
Prime task; namely, target selection and target check.
These subparts provide an example of how subtle
changes in interface design can produce unexpected
interactions at the embodiment level.

Argus Prime: Simulated Task Environment
Argus Prime is a complex but tractable simulated

task environment. In Argus Prime the subject s task is
to assess the threat value of each target in each sector of
a radar screen depicted in Figure 1. The screen
represents an airborne radar console with ownship at
the bottom. Arcs divide the screen into four sectors;
each sector is fifty miles wide. The task is dynamic
since the targets have a speed and course. A session is
scenario driven; that is, the initial time of appearance,
range, bearing, course, speed, and altitude of each target
are read from an experimenter-generated file. The



scenario can contain events that change a target s
speed, course, or altitude. New targets can appear at any
time during the scenario.

Figure 1: Argus Prime Radar Screen (left) and
Information/Decision Window (right)

The subject selects (i.e., hooks) a target by moving
the cursor to its icon (i.e. track number) and clicking.
When a target has been hooked, an information window
appears that contains the track number of the target
hooked and the current value of target attributes such as
speed, bearing, altitude, and course. The subject s task
is to combine these values, using an algorithm that we
have taught them, and to map the result onto a 7-point
threat value scale (shown on the right side in Figure 1.)

Targets must be classified once for each sector that
they enter. If a target leaves a sector before the subject
can classify it, it is considered incorrectly classified and
a score of zero is assigned.

For the versions of Argus Prime discussed here,
immediate feedback was provided for each
classification decision. In addition, summative feedback
was provided on the percentage of targets correctly
classified. (See Schoelles & Gray, in press, for more
details.)

Empirical Study
This paper provides a partial report on the third study

that we conducted. The results of prior studies indicated
that a ubiquitous feature of the task was keeping track
of which targets had been classified. In those studies
there was nothing on the radar screen to indicate
whether a target had been classified; that is, when a
classification was made, its on-screen icon did not
change (noChange). However, in both studies, if an
already classified target was reselected, the target s
current classification (CC) was shown in the
information window (i.e., its radio button, see Figure 1,
remained highlighted). We call this combination of no
change to the target s on-screen icon and persistence of

the classification in the information window the
noChange-CC interface.

The current study manipulates the ease of retrieving
status information (i.e., Is this target classified? ) from
the display. In addition to noChange-CC, two new
interfaces are used. The noChange-noCC interface is
similar to the noChange-CC in that the target s on-
screen icon does not change when a classification is
made. It differs from noChange-CC in that the
information window contains no record as to whether a
target is currently classified (i.e., once the ENTER key
is pressed, the radio button is unhighlighted, see Figure
1). In contrast, for the Change interface the on-screen
icon for targets that have been classified changes color.
When a target is no longer classified (i.e., when it
crosses a sector boundary) the icon reverts to the
unclassified color.

In the first two studies subjects frequently reselected
already classified targets. Their pattern of behavior
suggested that for the noChange-CC interface subjects
did not try to remember whether a target had already
been classified. Rather, the pattern suggested that
subjects simply clicked on targets until they found one
that was not classified.

It was unclear in the previous studies whether this
memory-less strategy (Ballard, Hayhoe, & Pelz, 1995)
is adopted by choice or whether, under the conditions of
the study, human cognition is incapable of retrieving
target status information. This issue is tested
empirically and analytically by the data and models
built for the current study.

Performance on the noChange-CC interface is used
as a baseline with which to compare the other
conditions. We expect the noChange-noCC interface to
force the memory versus memory-less issue. If subjects
have no memory for having classified a target, they will
be required to waste time re-computing the algorithm to
reclassify already classified targets. In contrast, the
Change condition provides a memory-less way to avoid
classified targets and to focus on unclassified ones.
Hence, subtle changes in the interface will enable
different sets of strategies between the three conditions.
These different strategies are expected to be
differentially successful and to result in stable
differences in performance.

The experiment was conducted over two sessions. In
the first 2-hr session the subjects were instructed on
how to do the task, did a sample scenario with the
experimenter, and then did five 12-min scenarios in the
noChange-CC condition. In the second 2-hr session the
subjects did a 12-min practice scenario in the
noChange-CC condition and then did two scenarios in
each of the three conditions (noChange-CC, Change,
noChange-noCC).



The Model
Our model runs under ACT-R/PM with the Eye

Movements and Movements of Attention Extension
(EMMA) (Salvucci, 2000). The ACT-R/PM
architecture combines ACT-R s theory of cognition
(Anderson & Lebiere, 1998) with modal theories of
visual attention and motor movement (Kieras & Meyer,
1997). ACT-R/PM explicitly specifies timing
information for all three processes as well as
parallelism between them. The software architecture
facilitates extensions beyond the modal theory of visual
attention and motor movements.

The ACT-R/PM code executing the model runs as a
separate process from Argus Prime. This process starts
when the scenario starts. All communication between
the model and Argus Prime is through the motor and
vision module commands of ACT-R/PM.

Model Description
The recurrent task of hooking a target can be

analyzed into a series of unit tasks (Card, Moran, &
Newell, 1983): target selection; target check; target
classification; and feedback. Each unit task has memory
retrieval, visual attention, and mouse movement
requirements. In ACT-R retrieval latency is a function
of the activation of the memory element being
retrieved. In addition, if the activation of a memory
element is not above threshold, the retrieval will fail.

Movement of attention is a combination of two ACT-
R/PM commands. The Find Location command is a
pre-attentive search for a feature that returns a location
to use as a parameter in the Move Attention command.
The Move Attention command encodes a declarative
memory element representing the visual object at the
specified location. With the EMMA extension, a series
of eye movements follows the initiation of the move
attention command. The time to encode the visual
object is a function of the eye movements.

Mouse movements are executed via ACT-R/PM s
Move Mouse command. The input to this command is
an object representation. The time to complete the
movement is a function of Fitts  Law. Mouse clicks are
executed with the Click Mouse command. The overall
operation of the model is an interleaving of productions
that perform the cognitive operations of memory
retrieval and goal modifications with the perceptual-
motor operations of pre-attentive search, movement of
attention, eye, and mouse movement.

In this paper, we focus on the target selection and
target check unit tasks. In all three conditions
(noChange-CC, noChange-noCC, and Change) the
model begins target selection by retrieving a memory
trace of the area in which it is currently searching; for
example, the lower right-hand portion of the radar
screen. It then pre-attentively searches for targets within

this area. If a target is found, attention is moved to the
feature to encode the target. (The track number is part
of the encoded representation.) At that point the Move
Mouse command fires and the cursor moves to and
clicks on the target.

The above procedure varies slightly as a function of
interface condition. In the noChange-CC and the
noChange-noCC conditions, after a target is found and
encoded, but before the Move Mouse command is
executed, the model attempts to perform a target check
by retrieving an episodic trace of a previous
classification of the track number. If it retrieves this
trace then it knows that the target is already classified;
hence, the model will search for another target. If it
cannot retrieve the trace, then the actions of moving the
cursor to the target and clicking on it are performed.

In the noChange-CC condition, after clicking on a
target the model will do a second target check by
conducting a feature search in the information window
to detect the highlighted radio button. If one is found
the search for a new target will begin. Otherwise the
Target Classification unit task begins. The noChange-
noCC condition does not have this double-check. If it
cannot retrieve a memory that the target is already
classified, it will reclassify the target.

In the Change condition, targets change color after
they are classified. As a consequence, the distinction
between the target selection and target check unit tasks
disappears. Hence, after a search area is retrieved, the
pre-attentive search looks for the color feature that
separates the unclassified targets (yellow) from the
classified ones (blue). This strategy is purely memory-
less in that no use is made of the episodic information
regarding a target s prior classification. (After all
targets in the retrieved area have changed color to blue,
the model will do a feature search over the entire screen
for yellow targets.)

Model and Subject Data Comparison
There are three limits to the model and analysis. The

first is that the model was not fit to individuals. The
same configuration and architectural parameters were
used for all runs of the model.

Second, within an interface condition, the model uses
the same strategies throughout the scenario. For
example, the model uses the same target selection and
target check strategies for the initial phase of the
scenario when no targets had been classified as for the
later stages when most targets had been classified.

Third, the base model was developed on the
noChange-CC condition. In general, the way in which
the model performed each unit task (i.e., target
selection, target check, target classification, and
feedback) was based on strategies that we observed our
subjects using in the first two studies. As the unit task
strategies required from 3 to 30 sec to execute, our



caveat is that in ACT-R/PM these strategies were
implemented at the embodiment level using productions
that required 50-100 msec to execute. Hence, the
implementation of the various unit task strategies
required us to make assumptions regarding memory
retrieval, attention shifting, and motor movements for
which we did not yet have empirical support.

In summary, at the unit task level of analysis the
models implemented strategies that were cognitively
plausible. For example, for the Change interface
condition, pilot subjects told us that they performed
target selection by looking for yellow targets.  The
implementation of such strategies at the embodiment
level was based on our knowledge of the pre-attentive
search literature, the ACT-R/PM cognitive architecture,
and inspired guesses. The testing of those inspired
guesses is what the current effort is all about.

Statistics Used
To compare human and model data, we report

ANOVA and planned comparisons. A measure of
variability for our model subjects is derived as follows.
For each of 12 human subjects, a model subject was
created. This model subject received the same six
scenarios as the corresponding human subjects received
during the second session. That is, if subject 1 did
scenario 1 and 2 in the noChange-CC condition,
scenario 3 and 4 in the Change condition and scenario
5, and 6 in the noChange-noCC condition, then a model
subject was run on the same set of scenarios and under
the same interface conditions. Hence any variability
between model subjects (within condition) can be
attributed to (a) unintended differences in how the 12
scenarios were designed, and (b) the randomness built
into the architecture. Unlike human subjects, all model
subjects in the same condition always follow the same
strategies.

We confess that our second set of statistics is a
willful abuse of ANOVA. The practical outcome of this
is to inflate our Type I error rate; that is, the reduced
variability due to model subjects should lead us to
identify more differences between model subjects and
human subjects than actually exist. We accept this
inflated Type I error rate. The cost to our research of an
inflated Type I error rate will be to cause us to spend
time and attention looking for differences in strategies
at the embodiment level that may not exist.

For each figure, we present the 95% confidence
interval for human subjects and model subjects. The
root mean square deviation (RMSD) of each human
subject from his or her scenario-matched model subject
is also reported.

Total Task Performance Comparison
Interface condition has a significant effect on the

performance of human subjects, F(2, 22) = 31.71, p <
.0001, MSE = 33.9. As Figure 2 shows, the Change
condition does best (85.5%), followed by noChange-CC
(76.4%), with noChange-noCC (66.6%) the worst.
Planned comparisons show that the difference between
each pair of conditions is significant at the level of
significance adopted for this report (p < .05).

Overall, our model subjects do about as well as our
human subjects (see Figure 2). However, although the
main effect of model versus human is not significant,
F(1, 22) = 1.64, p = .21, the interaction by interface
condition is [F(2, 44) = 7.3, p < .002]. The Figure
suggests that humans do slightly better than the model
for noChange-CC and Change conditions but about
equal to the model for noChange-noCC. As Figure 2
shows, the model makes the explicit prediction that the
two noChange groups will have equal performance
(noChange-CC = 67.8%; noChange-noCC = 67.5%).
The significant interaction suggests that our human
subjects are reacting to the interface conditions in a way
that the model does not.

Overall Performance
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Figure 2: Overall Performance comparison of human
and model. The RMSDs are 17 for noChange-CC, 13

for Change and 16 for noChange-noCC.

The variability shown by the model reflects
differences between scenarios, not differences in
strategies within conditions, and not differences
inherent to individual subjects. Hence our model-driven
approach provides us with an independent way of
accessing the equivalence of the scenarios. As shown
by the small confidence interval for the model subjects,
our efforts to create equivalent scenarios was largely
successful.

Target Selection Comparison
The three interface conditions showed significant

differences in the number of unclassified targets



selected. The Change condition selected the most
unclassified targets (68.3), followed by noChange-CC
(58.3), and then by noChange-noCC (50.0). The model
differences mirrored the human differences.

The more interesting comparison examines the
probability of reselecting (or rehooking) an already
classified target. For humans, planned comparisons
show that noChange-CC rehooks the most targets (79.1)
with there being no statistical difference in the number
of targets rehooked by the Change (3.7) and noChange-
noCC (16.3) conditions. [The overall ANOVA yields a
significant effect, F(2, 22) = 44.3, p < .0001, MSE =
441.3.]

Comparing model performance with human
performance yields a number of small surprises.
Although the overall human versus model comparison
is not significant (F < 1), we find a significant
interaction of model versus human by interface
condition, F(2, 44) = 5.3, p < .008, MSE = 228.8).
Compared to humans, the model rehooks fewer targets
in the noChange-CC condition, the same number of
targets in the Change condition, and more targets in the
noChange-noCC condition.

In both noChange conditions, prior to selecting a
target the model attempts to retrieve a memory of
whether that target had been classified. Only if the
retrieval fails will the model rehook an already
classified target. The fact that humans rehook more
targets than the model in the noChange-CC condition,
implies that humans rely less on memory retrieval, in
this condition, than does the model. In this condition, a
memory check is, in some sense, unnecessary as
clicking on the target will open the information window
that will clearly show whether a radio button is
highlighted or not.

It may be that the cost of a perceptual-motor check is
so much less than the cost of encoding and retrieving a
memory that the noChange-CC condition relies on a
single activity strategy, rather than one that involves
dual activities (i.e., memory and perceptual-motor).

To investigate this further, the model was modified to
only perform a perceptual-motor check; that is, to
exclude the attempted memory retrieval. As shown in
Figure 3, the model without memory selects many more
targets than do human subjects. The fact that the two
models bracket human performance (see also Gray &
Boehm-Davis, 2000) suggest that the memory-less
strategy is the preferred but not the exclusive strategy.
We are currently interrogating the human data for clues
as to the circumstances under subjects in the noChange-
CC condition will use a memory retrieval strategy.

In contrast to noChange-CC, the perceptual-motor
strategy is not available to the noChange-noCC
condition. In this condition, the cost of the failure of the
memory retrieval strategy is high. Reclassifying an
already classified target is effortful; consuming time

that would be better spent classifying an unclassified
target. Hence, this greater downstream cost may lead
human subjects to encode a memory trace to a higher
level of activation than the model. Alternatively, it may
lead them to more attempted retrievals than the model
or, perhaps, to adopt a lower retrieval threshold than the
model.

Target Selection - already classified
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Figure 3: Target Selection for Human and Model
with and without a memory retrieval. Model w/mem
attempts to retrieve an episodic trace of the encoded

target; only if the retrieval fails will a perceptual-motor
check be performed. Model wo/mem will only perform
the perceptual-motor check. The RMSDs are 42 for the

human and model w/mem and 47 for the human and
model wo/mem.

Our empirical data shows that subjects in the
noChange-noCC condition reliably require 100 msec
more than in the other conditions to classify a target. As
it is not obvious why classification per se should take
longer. However, the extra 100-msec is just enough
time to sneak in one extra retrieval of the trace of the
target just classified (Altmann & Gray, 1999), thereby
increasing the success of the memory strategy for the
Target Check unit task. Models incorporating this 100
msec of extra strengthening are being built and will be
tested to determine if this strengthening suffices to
produce the increment in performance shown by
humans over the current model.

Discussion
Performance of the model subjects can be viewed as

the embodiment of our theory of human performance.
Comparisons that yield a significant main effect of
model versus human signal places where our theory of
human performance breaks down. Comparisons that
yield a significant interaction of model versus human
signal places in which our understanding of how



interface design influences interactive behavior are
deficient. With this as our perspective, what does the
performance of our model subjects tell us about our
understanding of human interactive behavior?

A message that comes through loud and strong is that
if our goal is to understand cognitive processes and not
simply to predict performance outcomes, then obtaining
good fits to an overall performance measure, such as
Total Task Performance, can be misleading. The fit
between model and human on overall performance can
mask large and important differences in unit task
performance.

On the first two unit tasks, Target Selection and
Target Check, neither the main effect nor interaction of
model versus human was significant for number of
unclassified targets selected (first hook). This excellent
fit of model to data broke down when we examined the
number of times a target was rehooked. In this case the
interaction indicated much more rehooking for
noChange-CC than expected and less rehooking for
noChange-noCC than expected. This interaction could
be explained if the noChange-CC condition relied more
on a perceptual-motor strategy and less on memory than
did the model. Similarly, the noChange-noCC condition
may be encoding the episodic trace of already hooked
targets more highly than we had anticipated.

Conclusions
The goal of our research effort is to understand how

subtle changes in interface design may lead to large
changes in overall performance. As interactive behavior
emerges from the interaction of embodied cognition
with task and the artifacts designed to accomplish the
task, an explanation of performance changes requires a
consideration of the fine details of this interaction. In
this article we have focused on one type of change and
its effect on one part of task performance.

Although the fit of our model to overall performance
was good, examining the fit of the model at the unit
task level revealed important mismatches. For the
Target Selection and Target Check unit tasks, the initial
selection of unclassified targets was well fit by the
model but the rehooks were not. Analyses of the model
and the ways in which it matched and mismatched the
data suggested three distinct target checking strategies
that varied in their reliance on perceptual-motor versus
memory operations.
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