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Abstract

Parallel pattern recognition requires great computational
resources. It is desirable from an engineering point of
view to achieve good performance with limited resources.
For this purpose, we develop a serial model for visual pat-
tern recognition based on the primate selective attention
mechanism. The idea in selective attention is that not all
parts of an image give us information. If we can attend to
only the relevant parts, we can recognize the image more
quickly and using less resources. We simulate the primi-
tive, bottom-up attentive level of the human visual system
with a saliency scheme, and the more complex, top-down,
temporally sequential associative level with observable
Markov models. In between, there is an artificial neu-
ral network that analyses image parts and generates pos-
terior probabilities as observations to the Markov model.
We test our model on a well-studied handwritten numeral
recognition problem, and show how various performance
related factors can be manipulated. Our results indicate
the promise of this approach in complicated vision appli-
cations.

Introduction

Primates solve the problem of visual object recogni-
tion and scene analysis in a serial fashion with scan-
paths (Noton & Stark, 1971), which is slower but less
costly than parallel recognition (Tsotsos, Culhane, Wai,
Lai, Davis, Nuflo, 1995). The idea in selective attention
is that not all parts of an image give us information and
analysing only the relevant parts of the image in detail is
sufficient for recognition and classification.

The biological structure of the eye is such that a high-
resolution fovea and its low-resolution periphery pro-
vide data for recognition purposes. The fovea is not
static, but is moved around the visual field in saccades.
These sharp, directed movements of the fovea are not
random. The periphery provides low-resolution informa-
tion, which is processed to reveal salient points as targets
for the fovea (Koch & Ullman, 1985), and those are in-
spected with the fovea. The eye movements are a part of
overt attention, as opposed to covert attention which is
the process of moving an attentional ‘spotlight’ around
the perceived image without moving the eye.

In the primate brain, information from the retina is
routed through the lateral geniculate nucleus (LGN) to
the visual area V1 in the occipital lobe. The ‘what’ path-
way, also known as the ventral pathway for anatomical
reasons, goes through V4 and inferotemporal cortex (IT).

The ‘where’ pathway, or the dorsal pathway, goes into
the posterior parietal areas (PP) (Ungerleider & Mishkin,
1982). The ventral pathway is crucial for recognition and
identification of objects, whereas the dorsal pathway me-
diates the location of those objects. We should note that
although recent findings point towards a distinction be-
tween perception and guidance of action (Crick & Koch,
1990) instead of a distinction between different types of
perception, the issue is not resolved in favour of a spe-
cific theory (Milner & Goodale, 1995).

The serial recognition process gathers two types of
information from the image: The contents of the fovea
window, and the location to which the fovea is directed.
We call these ‘what’ and ‘where’ information, respec-
tively (Ungerleider & Mishkin, 1982). The object is thus
represented as a temporal sequence, where at each time
step, the content of the fovea window and the fovea po-
sition are observed.

Recurrent multi-layer perceptrons were used to simul-
taneously learn both the fovea features and the class
sequences (Alpaydin, 1996). Other techniques are ex-
plored in the literature to apply the idea of selective at-
tention to classification and analysis tasks (Itti, Koch,
Niebur, 1998; Rimey & Brown, 1990). Our approach
is to combine a feature integration scheme (Treisman &
Gelade, 1980) with a Markov model (Rimey & Brown,
1990).

We use handwritten numeral recognition to test our
scheme. In our database (UCI Machine Learning Repos-
itory, Optdigits Database), there are ten classes (numer-
als from zero to nine) with 1934 training, 946 writer-
dependent cross-validation, 943 writer-dependent and
1797 writer-independent test cases. Each sample is a
32 32 binary image which is normalized to fit the
bounding box. There are parallel architectures to solve
this problem in the literature (Le Cun, Boser, Denker,
Henderson, Howard, Hubbard, Jackel, 1989), and they
have good performance, but our aim is to design a scal-
able system which is applicable to problems where the
input data is high-dimensional (e.g. face recognition), or
not of fixed size (e.g. recognizing words in cursive hand-
writing). Implementing a parallel scheme with good per-
formance is not trivial in such cases.

This paper is organized as follows: We first describe
our model and its three levels. Then we report our simu-
lation results. In the last section we summarize and indi-



cate future directions.
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Figure 1: The selective attention model for visual recog-
nition.

The block diagram of the system we propose is given
in Fig. 1. It is composed of the attentive level that decides
on where to look, the intermediate level that analyses the
content of the fovea, and the associative level that inte-
grates the information in time.

Attentive Level

In the first step of the model, the bottom-up part of the vi-
sual system is simulated. We work on 12 12 downsam-
pled images to simulate a low-resolution resource. This
slightly decreases the classification accuracy, but speeds
up the computation considerably. Convolving the digit
image with 3 3 line orientation kernels produces four
line orientation maps in 0 , 45 , 90 and 135 angles.
These are combined in a saliency master map, which in-
dicates the presence of aligned lines on the image.

Line orientations are detected by different primitive
mechanisms in the visual cortex, operating in coarse, in-
termediate and fine scales (Foster & Westland, 1998).
We can also talk about simple, complex and hypercom-
plex cell structures in the visual cortex, that deal with
increasing levels of complexity and decreasing levels of
resolution. In constructing the saliency map, we use the
simplest set of features to decrease the computational
cost. Our experiments showed that adding other feature
detectors like corner maps, Canny edge detector, and fur-
ther line orientation maps in higher resolutions increased
the classification accuracy only slightly, whereas the in-
crease in the computational cost was significant.

The saliency map indicates the interesting spots on the
image. We simulate the fovea by movinga4 4 window
over the 12 12 downsampled image. The saliency val-
ues of the visited spots and their periphery are decreased,
and these spots are not visited again. This process has a
biological counterpart: Once neurons attuned to detect
a specific feature fire in the brain, they are temporarily
inhibited. Subsequently, subjects respond slower to pre-
viously cued locations (Klein, 2000).

Intermediate Level

The simulation of shifts of attention should provide us
with ‘what’ and ‘where’ information, but we want them
to be sufficiently quantized to be used in the associative
level. We divide the image space into uniform regions,
in effect, performing a quantization on the location infor-
mation. We use a second set of overlappping windows
to reduce the effect of window boundaries, as shown in
Fig. 2. We obtain a time-ordered sequence of visited re-
gions after the simulation of shifts. This constitutes the
‘Where’ stream for the particular sample (Fig 3).

Figure 2: Regions of the downsampled image. (a) The
uniform regions. (b) The additional, overlapping regions.
Notice how the corner at the intersection of 5, 6, 8"
and 9" regions are missed in those regions, but captured
clearly in the 13" region.

As fovea contents, we extract 64-dimensional real-
valued vectors. These vectors are produced by concate-



Figure 3: The saliency master maps of two examples
from the Optdigits database. Locations with high inten-
sity indicate high saliency values. The locations visited
by the fovea are connected with a line, and enumerated
in the order they are visited.

nating the corresponding4 4 windows on the line maps.
We prefer using the concatenated line maps to inspecting
the original bitmap image, because the line maps indi-
cate the presence of features more precisely. Further-
more, since they were constructed in the attentive level,
they come at no additional cost. In any case, we need a
vector quantization on the fovea contents before passing
them to the associative level.

In order to efficiently quantize this information, we
train artificial neural network experts at each region of
the image. The experts are single-layer perceptrons
(SLP) that are trained in a supervised manner (Bishop,
1995). Their input is the 64-dimensional fovea content
vector. The output of the experts are 10-dimensional
class posterior probability vectors, which are then clus-
tered with k-means clustering (Duda & Hart, 1973) to
obtain the ‘what’ information stream. We select single-
layer perceptrons over multi-layer perceptrons for a num-
ber of reasons. Multi-layer perceptrons overlearn the
training data quickly, and perform worse on the cross-
validation set. The number of parameters we need to
store for the multi-layer perceptron is larger, and the
training time is significantly higher. These properties
make the single-layer perceptron the better choice of ex-

pert in the final model.

Associative Level

In the associative level, the two types of quantized infor-
mation are combined with a discrete, observable Markov
model (OMM) (Rabiner 1989). We treat the regions vis-
ited by the fovea as the states of a Markov model, and
the quantized output of the local artificial neural network
experts as the observations from each state. We simulate
eight shifts for each sample in the training set, obtain the
‘where’ and ‘what’ streams, and adjust the probabilities
of the single Markov chain of the corresponding class to
maximize the likelihood of the training data. Training an
observable Markov model is much faster than training a
Hidden Markov Model.

In the observable model, the model parameters are
directly observed from the data. Since we know the
states, we can count the state transitions, and normal-
ize the count to find the state transition probabilities a;;,
as well as the initial state distribution probabilities ;.
Similarly, we count the occurrences of the observation
symbols (quantized outputs of the local neural networks)
at each state, and normalize them to find the observation
symbol probability distribution b; & :
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Finding the probability of the observation sequence is
much simpler in the observable Markov model, since the
states are visible. We just multiply the corresponding
state transition probabilities and the observation proba-
bilities:

n
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i 2

where § is the state sequence, O is the observation se-
quence,and A T; a;; b; k stands for the parameters
of the Markov model. i j 1 N are indices for states,
k 1 M is the index for the observation symbols.

The Markov model is trained with a limited training
set, and if the number of states and observation symbols
is large, there will be connections that are not visited
at all. Since the model is probabilistic, having a tran-
sition or observation probability of zero is not desired.
Instead, the transitions that have not occurred within the
training set should have a low probability in the model.
This is what we do in the post-processing stage. We scan
the probabilities of the trained Markov model, and re-
place all probabilities lower than a threshold (0 001) with
the threshold value. Then we normalize the probabili-
ties once more. This is a simple and fast procedure that
achieves the desired effect.
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Figure 4: Dynamic fovea simulation results. These are the histograms of the number of correctly and incorrectly

classified digits after each shift. See also Figs. 5 and 6.

We have also tried Hidden Markov Models where the
states are not visible and where the concatenated where-
what information is the observation, but this structure
performed worse than the observable Markov model.

Dynamic Fovea

One important advantage of using a Markov model is the
ease with which we can control the number of shifts nec-
essary for recognition. In the training period, our model
simulates eight shifts, which is set as the upper bound for
this particular application. After each shift, the Markov
model has enough information to give a posterior prob-
ability for each class. We may calculate the probability
o, ¢ of the partial sequence in the Markov model, which
reflects the probability of the sample belonging to a par-
ticular class, given the ‘where’ and ‘what’ information
observed so far. Using Eq. 4, we have

oy ¢ P 01 Ot Sl Sr }bc (S)

where O O; is the observation sequence up to time ¢,
S S; is the state sequence, and A are the parameters
of the Markov model for class c.

‘We can use this probability to stop our shifts whenever
we reach a sufficient level of confidence in our decision.
Let us define 0, c , the posterior probability for class ¢
at time ¢:

o C
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Let 7 be the threshold we use as our stopping criterion:
o c T @)

where the value of 7 is in the range [0,1]. If we assume
that absolute certainty is not reached anywhere in the
model and o, i is always below 1 0, selectingt 1 0is
equivalent to treating all samples as equally difficult and
doing eight shifts. Conversely, selecting T 0 is equiva-
lent to looking at the first salient spot and classifying the
sample.

Selecting a large value for T trades off speed for accu-
racy. With a well selected value, we devote more time
for difficult samples, but recognize a trivial sample in a
few shifts.

Results

In this section we present our simulation results. We give
additional information about the techniques we employ
in subsections.

Local Experts

Implementing local artificial neural network experts both
increases the classification accuracy and decreases the
complexity and classification time. The single-layer
perceptron returns a 10-dimensional vector from a 64-
dimensional linemap image. Since it is trained in a su-
pervised manner, it provides more useful information for
classification to the later Markov model, as our experi-
ments indicated.



Dynamic Fovea Simulation

When we simulate the dynamic fovea with a fixed thresh-
oldoft 095, we get 85 67 per cent classification accu-
racy with 5 46 per cent standard deviation on the writer-
dependent test set. The average number of shifts is 3 33,
which corresponds roughly to seeing one thirds of the
image in detail. This justifies our claim that analyzing
only a small part of the image is enough to recognize
it. On the writer independent test set, the classification
accuracy is 84 63 per cent, with a standard deviation of
7 58 per cent, and the average number of shifts is 3 37
(See Fig. 4 for the histograms depicting the distribution
of classifications over the shifts). We are doing less than
half the number of shifts we were doing, but the perfor-
mance decrease is less than a standard deviation.

The advantages of simulating a dynamic fovea become
apparent when we inspect Figs. 5 and 6. The accuracy of
classification increases when we increase the threshold,
because a higher threshold means making more shifts to
get a more confident answer. A lower threshold means
that a quick response is accepted. What happens is
that the average number of shifts increase sharply if the
threshold is set to a value very close to 1.0. In this
case, the classifier cannot exceed the threshold probabil-
ity with eight shifts, and selects the highest probability
class, without doing any more shifts. This is the reason
behind the relatively high number of correct and incor-
rect classifications after eight shifts in Fig. 4.
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Figure 5: Accuracy vs threshold value in dynamic fovea
simulation

Simulation Results

We summarize the results we obtain in Table 1. The
first column of the table shows the method employed.
The successive columns indicate the classification accu-
racy and its standard deviation on the training, cross-
validation, writer-dependent test and writer-independent
test sets.

In the first two rows, we do eight shifts, generate the
posterior probabilities of classes by the local artificial
neural network experts and take a vote without treating
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Figure 6: Average number of shifts vs threshold value in
dynamic fovea simulation

them as a sequence. Soft Voting takes into account the
10-dimensional outputs of the experts instead of a sin-
gle class code. Comparing the results with the OMM re-
sults show that the order information which is lost during
voting but used in OMM is useful. Another observation
is that the post-processing method we use increases the
performance by one standard deviation, which is a sig-
nificant increase.

The dynamic fovea simulation has a lower classifica-
tion accuracy, but it only needs 3 2 shifts on the average,
instead of the previous eight.

Finally, the last row indicates the accuracy of an all-
parallel scheme. We use a multi-layer perceptron (MLP)
with 32 32 binary input and 10 hidden units. Although
the MLP has a good accuracy in this problem, it is not
scalable due to the curse of dimensionality.

Conclusions and Future Work

The selective attention mechanism exploits the fact that
real images often contain vast areas of data that are in-
significant from the perspective of recognition. A low-
resolution, downsampled image is scanned in parallel
to find interesting locations through a saliency map,
and complex features are detected at those locations by
means of a high-resolution fovea. Recognition is done
serially as the location and feature information is com-
bined in time. By keeping the parallel part of the method
simple, we can speed-up the recognition process consid-
erably.

Our tests have demonstrated that an observable
Markov model may replace an HMM for the two-
pathway selective attention model. The observable
scheme is easier to train and use, and performs better.
The dynamic fovea simulation reveals further benefits of
serializing the recognition process. We can control the
time we spend on an image, and differentiate between
simple and confusing images. This is a desirable prop-
erty in a classifier, since it allows us to apply more reli-
able and costly methods to the confusing samples if we
wish. It also reduces the average recognition time, but it



Table 1:

Summary of Results

Performance
Method Training Validation | Writer Dep. Test | Writer Indep. Test
SLP+Simple Voting 86.74( 9.90) | 85.92( 9.39) 64.51( 25.62) 62.66( 25.74)
SLP+Soft Voting 93.85( 4.47) | 91.25( 7.07) 74.35( 27.66) 73.89( 26.67)
OMM+SLP 95.32( 3.72) | 83.98( 15.37) 84.42( 14.94) 80.92( 16.24)
OMM+SLP + post-processing | 94.37( 3.33) | 90.07( 7.92) 89.73(  8.68) 87.37( 8.73)
Dynamic fovea 91.41( 4.56) | 88.47( 7.98) 85.67( 5.46) 84.63( 17.58)
MLP 99.92( 0.12) | 97.45( 0.28) 97.25( 0.42) 94.54( 0.21)

must be remembered that the construction of the saliency

Itti, L., Koch, C., & Niebur, E. (1998).

A Model

map is necessary for all samples. Although we reduce
the time complexity of the associative level by half, the
overall gain is less than that.

Our attempt to classify digits may be seen as a toy
problem, since the ratio of the fovea area to the image
is not high enough to demonstrate the benefits of our
model. Although the accuracy is lower than the state-of-
the-art parallel approaches in the literature (e.g. the MLP
result in Table 1), the selective attention mechanism is
much more appropriate for applications where parallel
processing is too cumbersome to use, and the number of
input dimensions is high.

We are planning to employ our model in a more diffi-
cult task, such as face recognition, where an all-parallel
classifier, like the MLP, would be unnecessarily com-
plex; in a face, small regions of the face like eyes, nose,
mouth give us information. The saliency scheme has to
be modified for this purpose, as facial features necessi-
tate different and more complex feature detectors. The
fovea size also needs to be adjusted for the specific task.
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