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Abstract 

Cognitive modeling  can be used to compare alternative 
instructional strategies and to guide the design of curriculum 
materials.  W e modeled two alternative strategies for fraction 
division, and the models led to specific empirical predictions 
of the benefits and drawbacks of each strategy.  These 
insights provided concrete suggestions for developing lessons 
on fraction division, including a new potential strategy that 
combines the benefits of the two strategies.  This on-going 
work illustrates the potential of cognitive modeling  for 
informing the design of better mathematics curricula. 

Background 
Although U.S. students are fairly proficient at performing 

routine calculations, they lack a conceptual understanding of 
mathematics and have difficulty solving non-routine 
problems (Lindquist, 1989; Jakwerth, 1999). These findings 
have spurred many educators to call for an increasing focus 
on building understanding and problem solving skill in 
mathematics instruction. The National Council for Teachers 
of M athematics (NCTM ) standards state the overarching 
learning goal as: “Students must learn mathematics with 
understanding, actively building new knowledge from 
experience and prior knowledge,” (p. 16, NCTM , 2000). 
The standards proposed by NCTM , and curriculum and 
evaluations based on them, have met with opposition from 
advocates of “back-to-basics” approach (M athematically 
Correct, 2000).  M athematicians, politicians, teachers and 
parents have raised concerns that students are not learning 
their arithmetic facts and basic computational skills and are 
lobbying to abandon these reform efforts.  Further, many 
teachers have been resistant to changing their teaching 
practices and doubt the benefits of reform-based curricula. 
Although there is agreement on the need to improve the 

mathematics curriculum in the U.S., there is considerable 
disagreement on how the curriculum should be changed. 
Controversy over how to teach fraction division helps to 
illustrate this fundamental conflict over whether the 
curriculum should focus on gaining conceptual 
understanding or on proficiency in retrieving facts and 
executing computational procedures. To solve fraction 
division problems, students are traditionally taught the 
computational procedure of inverting the divisor and 
changing the operation to multiplication (invert-and-
multiply strategy).  As an alternative, the NCTM  2000 
standards proposed a picture division strategy where 
students draw a picture of the starting amount, repeatedly 
“cut off” groups of the size specified by the divisor and 

count the resulting number of groups.  For example, to solve 
six divided by 3/4, students could draw a line six units long, 
divide each unit into fourths, and then start at six and mark 
off groups of three fourths to find how many 3/4 are in six.  
According to the standards: “Lacking an understanding of 
the underlying rationale [for invert and multiply], many 
students are therefore unable to repair their errors and clear 
up their confusions about division of fractions… Carefully 
sequenced experiences with [picture division] problems 
such as these can help students build an understanding of 
division of fractions.” (p. 218 NCTM , 2000). 
In principle, an ideal approach to informing the debate on 

how best to teach a particular mathematical topic is to 
conduct a multi-year, multi-site experimental study 
comparing a reform-based approach with a back-to-basics 
approach.  In addition to the practical limitations of this 
approach, an empirical evaluation does not explain the 
reasons for the results or offer insights into how to apply 
these results to other topics.   
W e have begun to explore the role of cognitive models in 

helping to inform this debate.  Developing cognitive models 
offers four key advantages.  First, developing cognitive 
models requires precise and unambiguous specification of 
problem representations and action sequences and allows for 
detailed comparisons of problem solving strategies. Second, 
the specificity of the models leads to generation of specific 
hypotheses that can be tested through smaller, focused, 
empirical studies.  Third, cognitive models can be used to 
understand and explain empirical results, allowing 
researchers to understand the mechanisms underlying the 
differences and to extrapolate the findings to other domains.  
Finally, inspection and evaluation of these models yield 
concrete suggestions for better content and methods of 
teaching a particular topic. 
To illustrate the potential of cognitive modeling for 

informing the current debate in mathematics instruction, we 
describe our use of cognitive modeling to guide the design 
of lessons on fraction division (as part of a middle-school 
math curriculum we are developing). Rational number 
concepts and procedures are a cornerstone of middle-school 
mathematics, but U.S. students perform poorly on a range of 
rational number problems, including fraction division 
problems. (e.g. Lindquist, 1989; Lesh & Landau, 1983). 
Fraction division is a representative topic in mathematics for 
which the standards-based and back-to-basic movements 
have proposed alternative strategies.  
In the current paper, we present cognitive models of both 

fraction division strategies, outline predictions for learning 



and transfer that are revealed by the models, and offer 
preliminary implications of the models for instructional 
design, including a new strategy for fraction division that 
was suggested by this work  

Cognitive M odels 
Our cognitive models are based on ACT-R theory, which 
breaks knowledge into two main categories -- a declarative 
knowledge base of facts and a procedural knowledge base of 
production rules (Anderson, 1993).  Declarative knowledge 
includes both prior domain knowledge and representation of 
the current problem situation.  A production rule is a simple 
IF-THEN statement that manipulates declarative 
knowledge, and a series of production rules model actions 
for solving a problem.  

M odel of Picture Division Strategy
W e collected informal verbal protocols from five sixth-
grade students while they solved basic fraction division 
problems such as 15 ÷ 1 1/2. The students had received no 
formal instruction on fraction division.  One student 
spontaneously used a picture division strategy, and the other 
students were provided with a picture and encouraged to try 
using the strategy.   
The combination of the task analysis and students’ think 

alouds revealed 4 main sub-goals for implementing this 
strategy:  1) identify the values in the problems and draw 
the appropriate picture, 2) mark the picture into the 

appropriate size groups, 3) count the number of groups, and 
4) convert the remainder (if there is one) to a fractional 
value.  These four sub-goals translate into 13 key steps or 
actions that the problem solver must take (see Table 1; a 
dotted line designates the beginning of a new sub-goal). 
These actions were instantiated as productions in an 
intelligent tutoring system that is based on ACT-R theory 
(Anderson, Corbett, Koedinger & Pelletier, 1995). 

The productions in the picture division model rely on 
meaningful representation of problem information in 
declarative memory.  First, selection of this strategy comes 
from representing the meaning of division as finding the 
number of groups of a given size in the starting amount.  
Second, the productions rely on a quantity-based 
representation of fractions.  Students need to represent 
fractions as parts of a whole (e.g. 2/3 is two out of three 
equal size parts) rather than only as a visual arrangement of 
numbers (e.g. 2 is the top number and 3 is the bottom 
number).  Table 2 provides a sample declarative chunk used 
in representing the problem. 

M odel of Invert-and-M ultiply-Strategy 
The invert-and-multiply strategy can be broken into 4 main 
sub-goals: 1) identify the dividend and the divisor, 2) if 
needed, convert whole numbers and mixed numbers to 
fractions, 3) invert the divisor and multiply the two 
fractions, and 4) if needed, simplify the answer by 

Table 2: Example declarative knowledge chunk: 
Representation of 2/3 

QUANTITY2/3> 
  isa number 
  whole              0  
  top-number      2 
  bottom-number 3 
  parts-per-whole 3  ;;Picture Division strategy only 
  needed-parts      2  ;;Picture Division strategy only 

  Table 1:  Cognitive model of picture division strategy 

Productions Student Exam ple 
1. Identify-starting-amount Here’s her 8 foot long 

board
2. Draw-whole-starting-

amount 
OR
3. Draw-mixed-starting-

amount 

[draws line with 8 sections] 

4.  Identify-size-of-groups And she wants each one 
[shelf] to be a half, 

5.  Identify-value-of-
divisions 

So, I’d split each one in 
half  

6.  Draw-divisions [marks each whole in half] 
7. Identify-step-size [group size = 1; skip to 9] 
8. M ark-first-group  
9. M ark-next-group  
10.  Finished-marking-
groups 
11.  Count-whole-groups And then that’s how many 

shelves. [counts] 16. 
12.  Identify-remaining-
divisions 

NA 

13. Step-size-as-
denominator-of-remainder 

NA 

Note:  Extra productions would be needed to solve problems 
where the denominators of the dividend and divisor are different 
and one is not a multiple of the other (e.g. 3/5 ÷ 1/3). 

Table 3: Cognitive model for invert-and-multiply strategy 

Productions Student Exam ple 
1.  Identify-dividend 12  
2.  Identify-divisor 1 1/2 
3.  W hole-dividend-to-
fraction 

12/1 

4.  Identify-mixed-dividend NA 
5.  Identify-mixed-divisor  
6.  M ixed-to-fraction 1 1/2 is 3/2 
7.  Invert-divisor So, make it 12/1 * 2/3 
8. M ultiply-top-&-btm-#s Equals 24/3 
9. Improper-to-mixed That is 8 
10. ID-whole-#-answer [Done] 
11.  ID-if-quotient-is-
reducible 

NA 

12.  Reduce Fraction NA 



converting an improper fraction to a mixed number and/or 
by putting the fraction in simplest terms.  These four sub-
goals translate into 11 key steps or actions that the problem 
solver must take (see Table 3; dotted lines designate the 
beginning of a new sub-goal). 
The declarative knowledge used by the invert-and-

multiply strategy differs from that used by the picture 
division strategy.  In the invert and multiply strategy, 
division is represented as performing actions on numbers. 
Fractions are represented as a visual arrangement of digits, 
and quantity-based knowledge is not used (see Table 2).  

Em pirical Support for O ur M odels 
W e designed a brief intervention to validate and refine our 
cognitive models.  The students had already been taught the 
invert-and-multiply strategy, and we gave them a brief 
lesson on the picture division strategy.  Thirty-two ninth-
grade students from two math classes for below-average 
math students participated in the study. 
On the first day of our study, students received a 10-

minute lesson on fraction division from their classroom 
teacher.  The teacher discussed how to solve two types of 
fraction division problems using each strategy.  Instruction 
on the picture division strategy focused on forming a 
quantity-based representation of the problem without 
detailed instruction on the actions (productions) for 
implementing the strategy. The teacher then reviewed the 
steps for using the invert-and-multiply.  After this brief 
lesson, students were randomly assigned to use one of the 
two strategies to solve a set of problems.  Students solved 
two problems using the assigned strategy and received 
feedback and help in finding the correct answer if needed.  
Students then solved a set of 10 problems without feedback 
or help – 4 instructed problems (problems with whole 
numbers and/or unit fractions), 5 transfer problems 
(problems with non-unit fractions and with mixed numbers), 
and a fraction multiplication problem.  Students had 
approximately 20 minutes to solve the problems, and their 
compliance with the strategy instructions was high.   In the 
invert-and-multiply group, there was no trace of students 
using a pictorial strategy, and in the picture division group, 
a picture was drawn on 83%  of attempted problems.  Four 
days later, students were asked to solve a parallel set of 10 
problems using any strategy they wanted.   
Students had difficulty learning the picture division 

strategy from our brief lesson.  On Day 1, they solved 60%  
of the instructed problem types correctly, but only 9%  of the 
transfer problems correctly.  M any students got stuck and 
did not finish the assessment; students only attempted 57%  
of the problems (compared to students attempting 96%  of 
problems in the invert-and-multiply group). 
Not surprisingly, students who were assigned to use the 

familiar invert-and-multiply strategy solved more problems 
correctly on Day 1, compared to the Picture Division group 
(49%  vs. 28%  correct; F (1,30) = 16.96, p < .01).  They 
solved 89%  of the instructed problem types correctly, but 
only 31%  of the transfer problems correctly (although they 

had previously received instruction on these problem types 
as well.)  Student had particular difficulty when the 
problems involved mixed numbers.  Only half of the 
students solved at least one problem of this type correctly.  
W hen students were free to choose any strategy on Day 2, 

students used the more familiar and well practiced invert-
and –multiply strategy on a majority of problems (M  = 62%  
of trials with a mean accuracy of 60% ).  The picture 
division strategy was used on 10%  of problems, and only by 
students who were assigned this strategy on Day 1. 
To help explain the difficulties of each strategy, students’ 

incorrect solutions were classified using the productions in 
the relevant cognitive model.  W e distinguished between 
failing to initiate a production and implementing a 
production incorrectly (an error).  The ease of coding 
student solutions is an additional benefit of developing 
cognitive models.  W e report solution data from Day 1, but 
a similar pattern arises on Day 2.   
Tables 4 and 5 show the distribution of failures and errors 

over the productions for each strategy.  On the picture 
division strategy, students often did not know how to start 
the problem.  W hen students attempted the problem, they 
often did not succeed on the first sub-goal – identifying 
values and setting up the picture.  There were a surprising 
number of errors in identifying the dividend and in drawing 
the divisions correctly (e.g. students added 3 extra divisions 
per whole for 1/3, thus making fourths).  Students’ errors on 
identify-parts-per-whole varied by problem type, suggesting 
that an additional production was needed in our model. 
W hen the dividend was a fraction, students sometimes 
divided the fractional amount, rather than the whole, into 
the specified number of parts (e.g. for 1/2 ÷ 1/10, dividing 
the half into 10 sections).  Students need an extra production 
for mapping the parts-per-whole to the parts-per-fraction 
(e.g. if 10 division in one whole, half as many (5) in 1/2).  
W e have very little data on the difficulty of productions that 
occur later in the sequence because students often 
abandoned this strategy. 
Students using the invert-and-multiply strategy were 

much more likely to attempt to solve a problem, and the 
majority of mistakes arose from failing to or incorrectly 
converting mixed numbers to fractions.  However, this error 
did not cause students to abandon the strategy.  Rather, 
students made illegitimate adaptations to the strategy, such 
as inverting the fractional portion of the divisor and then 
multiplying the whole number portions and the fraction 
portions separately (e.g. 8 2/3 ÷ 2 1/3 = 8 2/3 * 2 3/1 = 16 
6/3). Further, students’ errors on the fraction multiplication 
problem suggested that the conditions for firing the invert-
divisor production were overly general for many students.  
Half of the students in the invert and multiply group 
inverted the second fraction before multiplying.    



Table 4: Classification of students’ incorrect solutions 
using the picture division strategy on day 1 

Action/Production No. of 
Errors 

No. of 
Failures 

<Start Problem> NA 64 
ID / Draw-whole-starting-amt 6 1 
ID / Draw-mixed-starting-amt 7 - 
Identify-size-of-groups - - 
Identify-value-of-divisions 6 11 
Draw-divisions 10 - 
Identify-step-size 7 1 
M ark-first-group - - 
M ark-next-group 1 - 
Finished-marking-groups - - 
Count-whole-groups 2 1 
Identify-remaining-divisions NA NA 
Step-size-as-denominator-of-
remainder 

NA NA 

Table 5: Classification of students’ incorrect solutions 
using the invert and multiply strategy on day 1 

Action/Production No. of 
Errors 

No. of 
Failures 

<Start problem> NA 8 
ID Dividend - - 
ID Divisor - - 
W hole-to-fraction - - 
ID-mixed-dividend & M ixed-to-
fraction 

13 15 

ID-mixed-divisor & M ixed-to-
fraction 

4 9 

Invert-divisor 2 9 
M ultiply-top-&-btm-#s 4 8 
Improper-to-mixed  3 9 
ID-if-common-factor NA NA 
Reduce Fraction NA NA 

Im plications of the results for the cognitive m odels 
The empirical results revealed a necessary refinement to the 
picture division model and validated the other productions 
in the two models.  Students’ errors when using the picture 
division strategy indicated that an additional production was 
needed when the dividend was a fraction.  Otherwise, the 
models captured students’ behaviors quite well. 
The empirical results also provide information on 

common buggy rules and on the frequency of correct 
productions “failing to fire”.  Students’ buggy rules will be 
modeled as production rules, allowing us to identify the 
source of the differences in the correct and incorrect 
productions.  This information can be used to target 
instruction at addressing or preventing these errors. 
These results also highlight the importance of the 

declarative knowledge structures.  The ninth-grade students 
in this study did not seem to form quantity-based 
representations of fractions or to represent division as 

finding the number of groups of a certain size in the starting 
amount.  W ithout these declarative knowledge structures, 
students had great difficulty implementing the initial 
productions for the picture division strategy.  In contrast, the 
invert-and-multiply strategy only relies on a superficial 
representation of division and of the position of the digits in 
fractions, although a quantity-based representation of the 
values could be used to recognize errors in its execution 
(e.g. that multiplying the whole numbers will lead to too 
large of an answer).  After more than 5 years of instruction 
on the division operator and on fractions, these students did 
not seem to be forming meaningful representations of either. 

Predictions from  the m odels 
Cognitive models of the picture division and invert-and-

multiply strategies can lead to comparative predictions for 
1) difficulty of learning each strategy, 2) efficiency of using 
each strategy once learned, 3) generality of each strategy to 
the range of fraction division problems, 4) retention of the 
strategies, and 5) transfer. 
First, the ease of learning the two strategies depends on 

students’ prior knowledge.  In particular, learning difficulty 
should be predicted by two factors -- how students represent 
fractions and division and how well they know symbol 
manipulation rules for working with fractions.  If students 
form quantity-based representations of fractions and attach 
meaning to the division operation, learning the picture 
division strategy should be relatively straightforward since a 
majority of the productions are based on familiar and well 
practiced knowledge (e.g. marking sections and counting).   
However, if students only represent fractions as visual 
arrangements of digits and division as manipulating 
symbols, this representation is not compatible with the 
strategy, so the strategy will be difficult to learn.  The 
invert-and-multiply is not dependent on a quantity-based 
representation of fractions.  In contrast, the ease of learning 
this strategy depends on how well students already know 
productions for converting whole and mixed numbers to 
fractions and for converting improper fractions to mixed 
numbers.  
Second, our models support the predictions that the two 

strategies will not be equally efficient once they are 
mastered.  Although the total number of productions to learn 
is similar in the two strategies (13 vs. 12), the number of 
production firings is often higher for the picture division 
strategy because some productions must fire many times. 
For example, to solve 6 ÷ 3/4, the draw-divisions production 
fires 18 times and the mark-next-group production fires 6 
times.  Thus, to solve this problem, the picture division 
strategy has 32 production firings whereas the invert-and-
multiply strategy has 6 production firings.  On a majority of 
problems, the invert-and-multiply strategy is more efficient 
than the picture division strategy once the strategy is 
mastered. 
Third, the ease of applying the two strategies to the full 

range of fraction division problems is not equivalent.   Once 
the full set of productions is mastered for the invert-and-



multiply strategy, it can be applied to any fraction division 
problem.  In contrast, the picture division strategy becomes 
very cumbersome if the dividend is large, the denominator 
of the divisor is large, or if the denominators of the dividend 
and divisor are not “friendly” (i.e. one denominator is not a 
factor of the other, such as 3 and 5).  The first two 
constraints require an unmanageable number of firings of 
the draw-divisions and mark-next-group productions.  The 
third constraint requires a new set of productions for finding 
equivalent fractions with a common denominator, thus 
necessitating extra productions that are not well grounded in 
the situation.  Overall, the picture division and invert-and-
multiply strategy can both be used to solve a majority of 
fraction division problems, but the invert-and-multiply 
strategy has the advantage of more uniform difficulty on all 
types of problems. 
The fourth prediction concerns the retention of the two 

strategies and confers an advantage to the picture division 
strategy.  In ACT-R, recall is based on spreading activation, 
so knowledge that is connected to a richer network of 
knowledge chunks is easier to recall (Anderson, 1993).  The 
picture division strategy utilizes rich knowledge 
representations of quantities and operations, so this network 
of relations should facilitate recall.   In contrast, the invert-
and-multiply strategy utilizes sparse, visual-based 
representations that are not connected to a rich knowledge 
base, so this strategy should be harder to recall after a delay.  
Our results indicate that students have difficulty correctly 
retrieving all of the relevant productions for invert-and-
multiply.  In addition, both level-of-processing and dual-
code theories of memory (Craik & Lockhart, 1972; Paivio, 
1971) suggest that the richer problem representations 
utilized by the picture division strategy should lead to better 
recall of this strategy, compared to the invert-and-multiply 
strategy.   Thus, we predict that recall of the picture division 
strategy will be more robust. 
Fifth, the models lead to very different transfer 

predictions.   Inspection of the models indicates no overlap 
in the productions that are used by each strategy, so learning 
one strategy will not aid learning of the other.   The two 
strategies also transfer differently to other topics.  W hen 
knowledge chunks are activated, their memory trace is 
strengthened (Anderson, 1993), so quantity-based 
representations of fractions and a meaning-based 
representation of division are strengthened (and possibly 
refined) when students use the picture division strategy. 
Thus, learning the picture division strategy should facilitate 
performance on tasks utilizing these representations.  
Representing fractions as part-whole quantities provides a 
powerful declarative knowledge structure for choosing and 
implementing a variety of strategies for tasks such as 
comparing magnitudes, estimating, or adding and 
subtracting fractions.  The picture division strategy should 
also transfer to decimal division since it strengthens a 
meaningful representation of division and many of the 
productions can be used to solve division problems with 
decimals.  In contrast, the invert-and-multiply strategy 

should facilitate performance on problems involving other 
fraction operations or algebraic simplification.  This strategy 
strengthens productions that are also used for adding, 
subtracting and multiplying fractions, such as converting 
improper fractions to mixed numbers, reducing fractions, 
and multiplying fractions (although students may over-
generalize the strategy and also invert the second fraction 
when multiplying fractions).  Productions from this strategy 
can also be applied to simplifying algebraic expressions.  
Overall, the two strategies should aid performance on very 
different types of transfer problems. 
Developing cognitive models of the two strategies leads 

to precise predictions of the benefits and drawbacks to each 
strategy.  The picture division strategy should be easy to 
learn if students have quantity-based representations of 
fractions, should be recalled after a delay, and should 
transfer to tasks such as comparing fractions and dividing 
by a decimal.  In contrast, the invert-and-multiply strategy 
should be easy to learn if students already know productions 
for manipulating fractions, should be efficient and broadly 
applicable once mastered, and should transfer to other 
fraction operations and to algebra. 

Im plications for Instructional Design 
Comparing the benefits and drawbacks of each strategy 

allows for an informed decision on whether and how to 
teach each strategy.  Neither of the strategies was strong 
along all five dimensions that we considered (difficulty of 
learning, efficiency, generality, retention and transfer).  
Instead, there were trade-offs for learning each strategy.   
How the fraction division problems are represented in 

declarative memory helps to explain the benefits and 
drawbacks to each strategy.  The picture division strategy 
supports a quantity-based representation of fractions as a 
specified number of parts of a whole.  Quantity-based 
representations provide a unified representation that can be 
used when solving a large variety of rational number 
problems, such as modeling, estimating, comparing, and 
doing arithmetic with fractions.  Thus, retention of the 
strategy should be high.  In contrast, the invert-and-multiply 
strategy relies on a visual, position-based representation, 
and this representation requires different, special-purpose 
productions to solve a similar variety of rational number 
problems, and retention of the productions would be 
relatively low.  However, these specialized productions lead 
to more efficient performance. 
Ideally, instruction could bridge from the more 

meaningful and grounded strategy of picture division to the 
more abstract and efficient strategy of invert and multiply, 
while maintaining high retention.  Unfortunately, there is no 
overlap in the problem representations or the productions 
used by these two strategies, making it difficult to build 
from one to the next.  Because of this limitation, we 
developed a third strategy, labeled the common denominator 
strategy, which builds off the picture division strategy and 
leads to an efficient and general method for dividing 
fractions.  Because this strategy builds on the picture 



division strategy, we first discuss suggestions for teaching 
the picture division strategy and then outline a model of this 
new strategy. 
The cognitive model suggests a careful sequence of 

lessons for teaching the picture division strategy.  Students 
should first learn to represent fractions as part-whole 
quantities.  Next, students should be taught to use the 
picture division strategy on problems that rely on the fewest 
number of productions - dividing a whole number by a unit 
fraction. After students have learned this minimum set of 
five productions, they will need help identifying the group 
size of non-unit fractions and mixed numbers, identifying 
the number of smaller divisions in bigger divisions if both 
numbers contain fractions, and converting remainders to 
fractional values when needed. 
After students have experience with the picture division 

strategy, the common denominator strategy can be 
introduced as a more general and efficient strategy.  
Initially, the common denominator strategy can be tightly 
grounded by the picture division strategy, and then it can be 
abstracted to a more efficient algorithm.  Both the grounded 
and abstract versions of the common denominator strategy 
are illustrated in Table 6.  The strategy has five main sub-
goals:  1) identify the initial values, 2) find the total number 
of divisions in the starting amount (which may involve 
finding a common denominator for the dividend and 
divisor), 3) identify the size of each group (with this 
common denominator), 4) divide the total number of 
division by the group size, 5) simplify the answer.   After 
identifying the initial values, students must figure out the 
total number of divisions in the starting amount, which is 
analogous to marking the divisions and counting the total 
number of divisions.  To identify the group size, students 
must make sure the divisor is a fraction that has the same 
number of parts-per-whole (denominator) as the dividend.  
Next, the number of groups is found by dividing the total 
number of divisions by the group size (i.e. dividing the two 
numerators), which is analogous to marking the groups on 
the picture and counting the number of groups.  This leads 
to an answer in appropriate fractional form, although the 
answer may need to be converted from an improper fraction 

to a mixed numbers.  After linking this strategy to the 
picture division strategy, a more formal, symbol-based 
strategy can be abstracted, which relies on converting whole 
and mixed numbers to fractions and finding fractions with a 
common denominator and then dividing the numerators and 
denominators.  This strategy retains the quantity-based 
representations of the picture division strategy while being 
more efficient and general than this strategy.  W e have used 
these analyses to design a set of lessons on fraction division 
that integrate all three strategies, and we are piloting these 
lessons with sixth grade students who have no prior 
experience with fraction division. 
In summary, cognitive modeling is a promising tool for 

evaluating alternative strategies and techniques that can be 
leveraged in the development of better curriculum material 
and instructional approaches. 
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Table 6:  Example of common denominator strategy for 
solving 1 1/2 ÷ 3/4 

Grounded approach:
Because 1/2 = 2/4, and 1 whole = 4 fourths, 1 1/2 = 6/4. 
now have: 6/4 ÷ 3/4 
In 6/4, there are 2 groups of 3/4, so the answer is 2. 
Abstract approach:
Equivalent fractions: 1/2 = 2/4 
M ixed to fraction: have 1 2/4: 1 * 4 = 4; 4 + 2 = 6, so 6/4 
Now have 6/4 ÷ 3/4 
6 ÷ 3 = 2; 4 ÷ 4 = 1 
Answer is 2/1, and because any number divided by 1 is that
number, the answer is 2. 


