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Abstract

In this article we present a connectionist model of category
learning that takes into account the prior knowledge that
people bring to many new learning situations. This model,
which we call the Knowledge-Resonance Model or KRES,
employs a recurrent network with bidirectional connec-
tions which are updated according to a contrastive-Hebbian
learning rule. When prior knowledge is incorporated into a
KRES network, the KRES activation dynamics and learning
procedure accounts for a range of empirical results regard-
ing the effects prior knowledge on category learning, in-
cluding the accelerated learning that occurs in the presence
of knowledge, the reinterpretation of features in light error
correcting feedback, and the unlearning of prior knowledge
which is inappropriate for a particular category.

A traditional assumption in category learning research is that
learning is based on those category members people observe
and is relatively independent of the prior knowledge that they
already possess. According to this data-driven or empirical
learning view of category learning, people associate observed
exemplars and the features they display (or a summary repre-
sentation of those features such as a prototype or a rule) to
the name or label of the category. In this account there is
neither need nor room for the influence of the learner’s prior
knowledge of how those features are related to each other or
other concepts on the learning process. In contrast, the last
several years has seen a series of empirical studies that dem-
onstrate the dramatic influence that a learner’s prior knowl-
edge often has on the learning process in interpreting and
relating a category’s features to one another and other con-
cepts. Indeed, knowledge effects have been demonstrated in
every area of conceptual processing in which they have been
investigated (see Murphy, 1993, for a review).

The goal of this article is to introduce a theory of category
learning that accounts for the effects of prior knowledge on
the learning of new categories. This theory, which we refer
to as the Knowledge-Resonance Model, or KRES, is a
connectionist network that specifies prior knowledge in the
form of existing concepts and relations between concepts.
We will show that when knowledge is incorporated into a
KRES network, KRES’s activation and learning procedures
account for a number of empirical results regarding the ef-
fects of prior knowledge on category learning.

Other connectionist models have been proposed to account
for the learning of new categories (e.g., Gluck & Bower,

1988; Kruschke, 1992), and these models have generally
used feedforward networks (i.e., activation flows only from
inputs to outputs) and learning rules based on error signals
that traverse the network from outputs to inputs (e.g., back-
propagation). KRES departs from these previous models in
two regards. First, rather than feedforward networks, KRES
uses recurrent networks in which activation is allowed to
flow not only from inputs to outputs but also from outputs
to inputs and back again. Recurrent networks respond to
inputs by each unit iteratively adjusting its activation in
light of all other units until the network “settles,” that is,
until change in units’ activation levels ceases. This settling
process can be understood as an interpretation of the input in
light of the knowledge encoded in the network. As applied to
the categorization problems considered here, a KRES net-
work accepts inputs that represent an object’s features, and
interprets (i.e., classifies) that object by settling into a state
in which the object’s correct category label is active.

Second, rather than backpropagation, KRES employs con-
trastive Hebbian learning (CHL) as a learning rule (Movel-
lan, 1989; O’Reilly, 1996). Backpropagation has been criti-
cized for being neurally implausible because it assumes non-
local information regarding the error generated from correc-
tive feedback in order for connection weights to be updated.
In contrast, CHL transmits error by using the same connec-
tions that propagate activation. During an initial minus
phase, a network is allowed to settle in light of an input
pattern. In the ensuing plus phase, the network is provided
with what serves as error-corrective feedback by being pre-
sented with the output pattern that should have been com-
puted during the minus phase and allowed to resettle in light
of that (correct) output pattern. Connection weights are then
updated as a function of the difference between the activation
of units in the two phases.

In the following sections we first describe KRES and then
present three simulations of human category learning data.
We will show how KRES’s successes can be attributed to
its recurrent network that allows category features to be in-
terpreted in light of prior knowledge, and the CHL learning
algorithm that allows (re)learning of all connections in a
network, including those that represent prior knowledge.

The Knowledge-Resonance Model (KRES)
An example of a KRES model is presented in Figure 1. In
Figure 1, circles depict units that represent concepts that are



either category labels (X and Y) or features (A0, A1, B0, B1,
C0, C1, etc.). To simplify the depiction of connections
among units, units are organized into layers specified by
rectangles. Solid lines between layers represent connections
among units. Solid lines terminated with black circles are
excitatory connections, whereas those terminated with hol-
low circles are inhibitory connection. Dashed lines represent
new, to-be-learned connections. Two connected layers are
fully connected (i.e., every unit is connected to every other
unit), unless annotated with “1:1” (i.e. “one-to-one”) in
which case a unit in a layer is connected to only one unit in
the other layer. Finally, double dashed lines represent
sources of external inputs. As described below, both the
feature units and the category label units receive external
input, although at different phases of the learning process.

We now describe the basic elements of KRES, which in-
clude its representation assumptions, activation dynamics
(i.e., constraint satisfaction), and learning via CHL.

Representational Assumptions
At any time a unit has a level of activation in the range 0 to
1 that represents the activation of the concept. A unit i’s
activation acti is a sigmoid function of its total input,

acti = 1 / [1+ exp (–total-inputi)]
and its total input comes from three sources,

total-inputi = net-inputi + external-inputi + biasi.
Network input represents the input received from other
units. External input represents the presence of (evidence for)
the concept in the external environment. Finally, a unit’s
bias can be interpreted as a measure of the prior probability
that the concept is present in the environment.

In many applications, two or more features might be
treated as mutually exclusive values on a single dimension.
In Figure 1 the stimulus space is assumed to consist of five
binary valued dimensions, with A0 and A1 representing the
values on dimension A, B0 and B1 the values on dimension
B, etc. To represent that these feature pairs are mutually
exclusive they are linked by inhibitory connections. The
category labels X and Y are also assumed to be mutually
exclusive and are linked by an inhibitory connection.

Connections between units are symmetric, that is,
weightij = weightji. A unit’s network input is computed by
multiplying the activation of each unit to which it is con-

nected by the connection’s weight, and then summing over
those units in the usual manner,

net-inputi = ∑j acti * weightij . 
KRES primarily represents prior knowledge in the form

of prior relations between features. For example, in Figure 1
it is assumed that features A0, B0, and C0 are related by prior
knowledge, as are features A1, B1, and C1. These relations
are rendered as excitatory connections between the features.
In KRES prior knowledge can also be represented in the
form of preexisting concepts (i.e., units) and excitatory con-
nections that link those preexisting concepts to the feature
units (see Simulation 3 below).

Classification via Constraint Satisfaction
Before a KRES model is presented with input that represents
an object’s features, the activation of each unit is initialized
to a value determined solely by its bias. The external input
of a feature unit is then set to 1 if the feature is present in
the input, -1 if it is absent, and 0 if its presence or absence
is unknown. The external input of all other units is set to 0.
The model then undergoes a multi-cycle constraint satisfac-
tion processes which involves updating the activation of
each unit in each cycle in light of its external input, its bias,
and its current network input. (In each cycle, the serial order
of updating units is determined by randomly sampling units
without replacement.) After each cycle the harmony of the
network is computed, given by,

harmony = ∑i ∑j acti * actj * weightij . (1)
Constraint satisfaction continues until the network settles,
as indicated by a change in harmony from one cycle to the
next of less than 0.00001.

The activation of units X and Y that result from this set-
tling process represent the evidence that the current input
should be classified as an X or Y, respectively. These activa-
tion values can be mapped into a categorization decision in
the standard way, that is, according to Luce’s choice axiom,

choice-probability (X, Y) = actX  / (actX + actY) . 

Contrastive Hebbian Learning (CHL)
As described earlier, the settling of a network that results
from presenting just the feature units with input is referred
to as the minus-phase. In the plus-phase, error-correcting
feedback is provided to the network by setting the external
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inputs of the correct and incorrect category label units to 1
and –1, respectively, and allowing the network to resettle in
light of these additional inputs. We refer to the activation
values of unit i that obtain after the minus and plus phases
as acti

– and acti
+, respectively. After the plus phase the con-

nection weights are updated according to the rule,

∆weightij = lrate * (acti
+ * actj

+ – acti
– * actj

–) (2)
where lrate is a learning rate parameter.

Network Training
Before training a KRES network, all connections weights
are set to their initial values. In the following simulations,
all to-be-learned connections are initialized to a random value
in the range [-0.1, 0.1], and the biases of all units are initial-
ized to 0. As in the behavioral experiments we simulate,
training consists of repeatedly presenting a set of training
patterns in blocks with the order of the patterns randomized
within block. Training continues until the error for a block
falls below an error criterion of 0.10. The error for a block is
computed by summing the errors associated with each train-
ing pattern in the block and dividing by the number of pat-
terns. The error associated with a training pattern is the sum
of the squared differences between the activation levels of the
category label units and their correct values (0 or 1).

KRES Simulation of Empirical Data
We present KRES simulations of three empirical data sets
that illustrate the effect of prior knowledge on category
learning. The KRES model was rerun ten times with a dif-
ferent set of random weights, and the results reported below
are averaged over those ten runs.

Simulation 1: Murphy and Allopenna (1994)
In the literature on category learning with prior knowledge,
perhaps the most pervasive effect is that learning is dramati-
cally accelerated when the prior knowledge is consistent with
the empirical structure of training exemplars. For example,
Murphy and Allopenna (1994, Experiment 2), presented
examples of two categories the features of which either could
(Theme Condition) or could not (No Theme Condition) be
related to one another. In the Theme condition one category
had six typical features that could be related because they
could be construed as features of arctic vehicles ("drives on
glaciers," "made in Norway," "heavily insulated,” etc.)
whereas the other category had six typical features that could
be construed as features of jungle vehicles ("drives in jun-
gles," "made in Africa," "lightly insulated,” etc.). In the No
Theme condition, the typical features of the categories could
not be related to one another. Exemplars also possessed three
knowledge-irrelevant features which were not predictive of
category membership. Murphy and Allopenna found that
participants reached a learning criterion in fewer blocks in
the Theme (2.5) versus the No Theme condition (4.1), a
result the authors attribute to the knowledge relating the
features in the Theme condition.

This experiment was simulated by a KRES model like the
one shown in Figure 1 with 18 features representing the two
values on 9 binary dimensions. In the Theme but not the No
Theme condition the six related features in each of the two

categories were linked with excitatory connections. The
weight on these excitatory connections was initialized to
0.4, the inhibitory connections were initialized to –2.0, and
the learning rate was set to 0.10.

The results indicated that KRES reproduces the learning
advantage found in the Theme condition: The error criterion
was reached in fewer blocks as compared to the No Theme
condition (2.0 vs. 4.0). This advantage can be attributed to
KRES’s use of recurrent networks: The mutual excitation of
knowledge-relevant features in the Theme condition resulted
in higher activation values for those units, which in turn led
to the faster growth of the connection weights between the
features and category label units (according to the CHL
learning rule Eq. 2). Once some learning of those connec-
tions has occurred, the higher activation of the features also
leads to greater activation of the category labels themselves.

Murphy and Allopenna also varied the frequency with
which the six knowledge-relevant features appeared during
training, and then tested how subjects classified those fea-
tures during an ensuing test phase. The left side of Figure 2
indicates that, as expected, RTs for these single-feature clas-
sification trials were shorter for frequent versus infrequent
features in the No Theme condition. In contrast, in the
Theme condition RTs were insensitive to features’ empirical
frequency. This pattern of results was also reflected in sub-
jects’ categorization accuracy. (Note Figure 2’s RT scale has
been inverted to facilitate comparison with KRES’s choice
probabilities presented below.)

To determine whether KRES would also exhibit these ef-
fects, after training the model was presented with single fea-
tures. That is, the unit representing that feature was given an
external input of 1, the unit representing the other feature on
the same dimension was given an input of –1, and all other
units were given an input of 0. The right side of Figure 2
indicates that KRES’s choice probabilities reproduce the
pattern of results for the single-feature tests. In KRES, in-
frequently presented knowledge-relevant features are classified
nearly as accurately as frequently presented ones because
during training those features were activated by inter-feature
excitatory connections even on trials in which they were not
presented, and hence were associated with the category label
nearly as strongly as knowledge-relevant features that were
frequently presented.
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Simulation 2: Kaplan and Murphy (2000)
Simulation 1 provides evidence in favor of KRES’s use of
recurrent networks to accelerate learning by amplifying the
activation of features interconnected by prior knowledge.
However, another distinctive characteristic of KRES is that
the category label units are also recurrently connected to the
features. In this section we provide evidence that activation
also flows backwards from category label units.

Using a modified version of the materials used in Murphy
and Allopenna (1994), Kaplan and Murphy (2000, Experi-
ment 4) provided an especially dramatic demonstration of the
effect of prior knowledge. In that study, participants were
presented with training examples that contained only one of
the knowledge-relevant features and up to six knowledge-
irrelevant features that were predictive of category member-
ship. That is, the single knowledge-relevant feature in each
exemplar had prior associations only to features in other
category exemplars. Under these conditions, one might have
predicted that participants would be unlikely to notice the
relations among the features in different exemplars, espe-
cially given that those features were each embedded in an
exemplar with many knowledge-irrelevant features. In fact,
participants in this Intact Theme condition reached a learning
criterion in fewer blocks (2.7) than did those in a No Theme
condition (5.0) in which the categories had the same empiri-
cal structure but no relations among features.

We simulated this experiment with a KRES model with
22 features on 11 binary dimensions. In the Intact Theme
condition the features within the two sets of six knowledge-
relevant features were inter-related with excitatory connec-
tions, as in Simulation 1. The weight on these excitatory
connections was initialized to 0.35, the inhibitory connec-
tions were set to –2.0, and the learning rate was set to 0.10.

KRES reproduced the learning advantage found in the In-
tact Theme condition (3.0 blocks) as compared to the No
Theme condition (5.4). This advantage obtained because
even though each training pattern in the Intact Theme condi-
tion contained only one knowledge-relevant feature, that
feature tended to activate the knowledge-relevant features to
which it was connected, and hence the connections between
each knowledge-relevant feature and its correct category label
were strengthened on every trial to at least some degree.

After each training block, Kaplan and Murphy also pre-
sented test blocks in which participants classified each of the
22 features. The left side of Figure 3 indicates that as ex-
pected after the final block of training participants in the No
Theme condition were faster at classifying those features that
appeared in several training exemplars (Characteristic fea-
tures) than those that appeared in just one (Idiosyncratic fea-
tures). In contrast, in the Intact Theme condition participants
were faster at classifying the Idiosyncratic features, because
they were also knowledge-relevant. Unexpectedly, Intact
Theme participants were also faster at classifying the Char-
acteristic features (i.e., the knowledge-irrelevant features)
even though those features were not related via prior knowl-
edge, and even though Intact Theme participants had experi-
enced fewer training blocks on average (2.7 vs. 5.0).

This latter result is a challenge for many standard
connectionist accounts of learning, because in such accounts
the better learning associated with knowledge-relevant fea-

tures would be expected to overshadow the learning of
knowledge-irrelevant features (Gluck & Bower, 1988)–that
is, these features should be worse with knowledge than
without as a result of them competing with the stronger
knowledge-relevant features. In contrast, Figure 3 indicates
that KRES is able to account for the better learning (or in
some experiments, equal learning) of the knowledge-
irrelevant features in the Intact Theme condition. This result
can be attributed to the use of recurrent connections to the
category label units. After some excitatory connections be-
tween the knowledge-irrelevant features and category labels
have been formed, the knowledge-relevant and -irrelevant
features began to activate each other through the category
node. This greater activation of the knowledge-irrelevant
features leads to accelerated learning of their connection
weights to the category labels. That is, KRES’s use of re-
current networks compensates for the effects of cue competi-
tion found in the usual feedforward network.

Simulation 3: Wisniewski and Medin (1994)
In a final simulation we demonstrate the efficacy of contras-
tive-Hebbian learning to update weights on connections not
involving the category label units. In particular, we examine
KRES’s ability to update connections representing prior
knowledge that is inappropriate in the current context.

Wisniewski and Medin (1994, Experiment 2) present em-
pirical results that call into question the assumption of stan-
dard theories of category learning that features can be identi-
fied prior to learning. Participants were shown two catego-
ries of line drawings of persons that were described as drawn
by creative and non-creative children or by farm and city
kids. Wisniewski and Medin chose to use line drawings to
illustrate that what constitutes a feature in a stimulus de-
pends on the prior expectations that one has about its possi-
ble category membership. For example, they found that par-
ticipants would assume the presence of abstract features
about a category depending on the category’s label (e.g.,
creative children’s drawings depict unusual amounts of detail
and characters performing actions) and examine the drawings
for concrete evidence of those abstract features in order to

Figure 3. Results from Kaplan & Murphy (2000). In
the Intact Theme condition Idiosyncratic features are
knowledge-relevant and Characteristic features are
knowledge-irrelevant.
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determine its category membership. They also found that the
feedback participants received about category membership led
them to change their original interpretation of certain fea-
tures of the line drawings. For example, after first interpret-
ing a character’s clothing as a farm “uniform” (and categoriz-
ing the picture as drawn by a farm kid), some participants
reinterpreted the clothing as a city uniform after receiving
feedback that the picture was drawn by a city kid.

To demonstrate these effects with KRES, we imagined a
simplified version of the materials of Wisniewski and
Medin’s in which there were only two drawings. One draw-
ing (Drawing A), was of a character performing an action
interpretable either as climbing in a playground or dancing.
In the other (Drawing C), a character’s clothing could be
seen as a farm uniform or a city uniform. These alternative
interpretations are represented in the left side of the KRES
model of Figure 4. Whereas we assume the two interpreta-
tions of Drawing A are equally likely, we assume that a city
uniform is the more likely interpretation of Drawing C (as
depicted by the heavier line connecting the features of Draw-
ing C and their city uniform interpretation). The alternative
interpretations are connected with inhibitory connections
representing that only one interpretation is correct.

The model of Figure 4 was presented with the problem of
learning to classify Drawing A as done by a city kid, and
Drawing C by a farm kid. We represented the expectations or
hypotheses that Wisniewski and Medin found that learners
form in the presence of meaningful category labels such as
farm or city kids as units connected via excitatory connec-
tions to the category labels, as shown in the right side of
Figure 4. In Figure 4, city and farm kids are expected to be
in locations and wear clothing appropriate to cities and
farms. These expectations are in turn related by excitatory
connections to the picture interpretations that instantiate
them: climbing in a playground instantiates a city location,
and city and farm uniforms instantiate city and farm cloth-
ing, respectively. In Figure 4, all inhibitory connections
were set to –3.0 and all excitatory connections were set to
0.25, except for those between Drawing C’s features and
their city uniform interpretation, which were set to 0.30.

Before a single training trial is conducted, the prior

knowledge incorporated into this KRES model is able to
decide on a classification of both drawings. Upon presenta-
tion of Drawing A, its two interpretations, climbing-in-a-
playground or dancing are activated, and climbing-in-a-
playground in turn activates the city location expectation,
which in turn activates the category label for city kids’ draw-
ings. The drawing is correctly classified as having been
drawn by a city kid. Moreover, as the network continues to
settle, activation is sent back from the category label to the
climbing-in-a-playground unit. As a result, the climbing-in-
a-playground interpretation of Drawing A is more active
than the dancing interpretation when the network settles.
That is, the top-down knowledge provided to the network
results in the resolution of an ambiguous feature (i.e., the
action is interpreted as climbing in a playground rather than
dancing). Wisniewski and Medin found that the same draw-
ing would be interpreted as depicting dancing instead when
participants were required to classify the drawings as having
been done by creative or noncreative children.

Similarly, upon presentation of Drawing C, its two inter-
pretations are activated, but because the city uniform inter-
pretation receives more input as a result of its larger connec-
tion weight, it quickly dominates the farm uniform interpre-
tation. As a result, the category label for city kids’ drawings
becomes active (via the city clothing expectation). That is,
the drawing is incorrectly classified as having been drawn by
a city kid. However, error feedback results in the model
changing its interpretation of Drawing C. During the
model’s plus phase, the farm kids’ category label is more
active than the city kids’ label as a result of the external
inputs those units receive. The activation emanating from
the farm kids’ label leads to the activation of the farm cloth-
ing expectation and then the farm uniform feature interpreta-
tion, which ends up dominating the city uniform unit.

This result indicates that KRES can reinterpret features in
light of error feedback. The more important question, how-
ever, is whether KRES can learn this new interpretation so
that Picture C (or a similar picture) will be correctly classi-
fied in the future. The left side of Figure 5 shows the
changes to the connection weights brought about by the
CHL learning rule with a learning rate of 0.3 as a function

farm
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Figure 4. KRES model for Simulation 3.
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of number of blocks of training on the two drawings. Figure
5 indicates that the connection weights associated with the
interpretation of Drawing C as a city uniform rapidly de-
crease from their starting value of 0.30, while the weights
associated with Drawing C’s interpretation as a farm uni-
form increase from their starting value of 0.25. As a result,
after just one training block KRES’s classification of Draw-
ing C switches from being done by a city kid to a farm kid
(as indicated by the choice probabilities shown in the right
side of Figure 5). That is, KRES uses the error feedback it
receives to learn a new interpretation of Drawing C.

General Discussion
We have presented a new model of category learning that
attempts to account for the influence of prior knowledge that
learners often bring to the task of learning a new category.
KRES utilizes a recurrent network in which knowledge is
encoded in the form of connections among units. We have
shown the changes brought about by this recurrently-
connected knowledge to the interpretations and reinterpreta-
tions of a category’s features provides a reasonable account
of three data sets exhibiting the effects of prior knowledge
on category learning. In Simulation 1 we demonstrated how
KRES’s recurrent network provides a pattern of activation
among features that accounts for the finding that knowledge
accelerates the learning of connections to category labels. In
Simulation 2 we demonstrated that the presence of knowl-
edge does not inhibit the learning of knowledge-irrelevant
features, a striking result in light of well-known learning
phenomena such as cue competition. In Simulation 3 top-
down flow of activation was instrumental in KRES’s suc-
cess in resolving the ambiguity surrounding the interpreta-
tion of a perceptual features. Moreover, the CHL learning
rule allowed the knowledge responsible for one interpretation
of an ambiguous feature to be unlearned and a new interpre-
tation learned when the network was provided with feedback
regarding the stimulus’s correct category.

KRES departs from previous connectionist models that at-
tempt to account for the effects prior knowledge with feed-
forward networks. For example, Heit & Bott (2000) have
proposed a model, Baywatch, that assumes that features send
activation to prior concepts, that both the features and the

prior concepts send activation to the category label units,
and that learning consists of learning the connections to the
category labels. Although we believe that existing categories
often aid the learning of new categories (e.g., our knowledge
of VCRs helps us understand DVD players), the Baywatch
approach is limited to the learning of new categories that are
essentially refinements of existing concepts. In contrast,
KRES only assumes the presence of relations between fea-
tures to account for the data in Simulations 1 and 2, and
hence is able to learn truly new concepts, not just refine-
ments of existing ones.

There remains much to be discovered about the properties
of recurrent networks and contrastive Hebbian learning with
regard to the learning of categories. However, we believe
that recurrent networks are likely to be critical to any at-
tempt at accounting for the effects of prior knowledge on
category learning. For example, standard feedforward net-
works seem intrinsically unable to account for (a) the accel-
erated learning produced by prior knowledge without presup-
posing prior knowledge of the to-be-learned category, (b) the
effects of top-down knowledge on resolving ambiguous fea-
tures, and (c) the reinterpretation of ambiguous features in
light of feedback regarding category membership.
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