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Abstract

In an extensive research tradition in categorization, re-
searchers have looked at how participants will classify
new objects into existing categories; or the factors af-
fecting learning to associate category labels with a set of
objects. In this work, we examine a complementary as-
pect of categorization, that of the spontaneous classifi-
cation of items into categories. In such cases, there is no
“correct” category structure that the participants must in-
fer. We argue that the this second type of categorization,
unsupervised categorization, can be seen as some form
of perceptual organization. Thus, we take advantage of
theoretical work in perceptual organization to use sim-
plicity as a principle suitable for a model of unsuper-
vised categorization. The model applied directly to
similarity ratings about the objects to be categorized
successfully predicted participants’ spontaneous classifi-
cations. Moreover, we report evidence whereby per-
ceived similarity is affected by spontaneous classifica-
tion; this supplements the already substantial literature
on such effects, but in categorization situation where the
objects’ classification is not pre-determined.

There are several situations in real life where novel
objects can be spontaneously organized into groups.
Consider a set of pebbles taken from a beach, or cloud
patterns on a particular day, or just meaningless shapes
shown onto a computer screen. This spontaneous clas-
sification can be appropriately labeled “unsupervised”
because there are no “correct” categories the observer
need to infer. By contrast, in supervised categorization,
the learner (e.g., a child or someone learning a new
language), has to infer what a category is by observing
exemplars of the category and guessing their category
membership (e.g., a child could be corrected for calling
an apple an orange; through a process of corrective
feedback, she would eventually learn to associate the
appropriate objects with the category label “orange”).

Supervised vs. unsupervised categorization

While there has been very little theoretical work on
unsupervised categorization, this has not been the case
for supervised categorization. Several models have
been put forward, covering different intuitions about

the cognitive mechanisms of supervised categorization.
For example, in definitional accounts of concepts (e.g.,
Katz & Fodor, 1963), categories are characterized by
necessary and sufficient conditions for an item to be a
category member (see Pothos & Hahn, 2000, for a
recent evaluation). In exemplar theories (e.g., Nosof-
sky, 1989), a concept is represented by a set of known
instances of that concept; new instances are therefore
assigned to different categories in terms of their simi-
larity to the members of each category. In prototype
theories assignment is also determined by a similarity
process, but this time to the prototype of each category,
where a category prototype encapsulates some measure
of central tendency across the exemplars of the cate-
gory (e.g., Homa, Sterling, & Trepel, 1981).

Despite the technical sophistication of this research,
it does not cover the whole scope of categorization pro-
cesses. Models such as the exemplar model or the pro-
totype one could never be used to predict how a person
would spontaneously classify a set of items. In fact, in
an influential paper Murphy and Medin (1985) criti-
cized models such as the above for failing to explain
category coherence—why it is the case that certain
groupings of items make better categories than others;
for example, the categories of birds or cups are coher-
ent, but a category consisting of dolphins born on
Tuesdays together with pink tulips within 20 miles of
London, and the Eiffel Tower would be nonsensical.
Given that the exemplar or prototype models could not
explain such observations, Murphy and Medin con-
cluded that they are inadequate models of categoriza-
tion (and thus made a case for the importance of gen-
eral knowledge in categorization).

However, under the light of the present distinction
between supervised and unsupervised categorization, it
is not the case that the exemplar or the prototype modes
are inadequate in that they fail to capture general
knowledge effects. Rather, category coherence is a
problem of unsupervised categorization, as it relates to
how categories originate—a process which, necessarily,
cannot be guided by a ‘supervisor.’

To summarize this section, the distinction of catego-
rization models into supervised and unsupervised
serves the useful purpose of enabling a closer specifi-



cation of the type of results that we expect each model
to be able to capture. Unsupervised models of categori-
zation will fail in predicting how participants will clas-
sify a new instance into a set of existing categories; but
such models could probably be used to ground a theory
of category coherence. The converse applies to models
of supervised categorization.

Previous work on unsupervised categoriza-
tion

There has been an extensive experimental tradition on
spontaneous classification, under the name of free
sorting. However, the objective of free classification
research is to identify the factors that appear to influ-
ence performance in sorting tasks, such as different
types of instructions / experimental procedures and the
structure of the stimuli (e.g., whether they are made of
integral or separable dimensions, and the extent to
which this affects the number of dimensions used in the
classification task; e.g., Handel & Preusser, 1970; Wills
& McLaren, 1998; Kaplan & Murphy, 1999). Thus,
results from free sorting do not bear directly on the
study of spontaneous classification, in the sense of ac-
tually predicting the classifications people are likely to
come up with.

Trying to predict how objects are divided into groups
has been a very frequently researched topic. While an
exhaustive review of the different accounts by far ex-
ceeds the scope of the present work, we next discuss
some of the qualifying factors of previous work with
respect to its appropriateness for modeling unsuper-
vised categorization.

Within machine learning and statistics, there is a
long literature on clustering. There are two broad
classes of clustering algorithms, agglomerative models
and K-means ones. In the former case, for a set of N
objects a hierarchy of clusters is produced whereby in
the bottom level there are N clusters (a cluster for each
object) and in the top level only one cluster (which in-
cludes all the objects). In the latter case, the number of
clusters in which a set of objects is to be divided is set
externally (this is why this approach is called “K-
means”; for a review see Krzanowski & Marriott,
1995). In both approaches, knowledge of the number of
groups sought is assumed; it must be pre-determined by
the researcher. However, for a psychological model of
unsupervised categorization we need to be able to pre-
dict both the number of categories and how the objects
to be categorized are portioned into these categories
within the same formalism.

This turns out to be an important limitation in terms
of applying previous relevant modeling work in psy-
chology directly to the problem of unsupervised cate-
gorization, as well. This applies, for example, to Ahn
and Medin’s Two Stage Model of Category Construc-
tion (Ahn & Medin, 1992), Michalski and Stepp’s
(1983) CLUSTER/2, and Anderson’s rational categori-
zation work (1991; additionally, Anderson’s model is

sensitive to order of presentation of the items to be
categorized, so that his work is directed more towards
dynamic aspects of categorization). This is not to criti-
cize any of the excellent work cited above, but rather
attempt to specify more precisely its modeling objec-
tive, with respect to how well it applies to unsupervised
categorization.

Perhaps more directly relevant is Fisher’s COBWEB
(e.g., Fisher, 1996), which is based on the psychologi-
cally motivated principle of category utility (e.g.,
Corter & Gluck, 1992). Variants of the model can in-
deed determine the number of categories, as well as the
way the items should be partitioned into the categories.
However, three factors prevent its direct comparability
to the present model. Firstly, category utility has been
put forward to explain basic level categorization (e.g.,
Rosch & Mervis, 1985); the relation between basic
level categorization is presently unknown. Secondly,
COBWERB has been investigated—and to a large extent
validated—as a statistical model, not a psychological
algorithm. One of the differences between the two is
that a psychological model is supposed to be founded
on computational principles that make some statement
about cognition. Finally, category utility assumes a
representation of objects in terms of features; categori-
zation predictions in this work are derived on the basis
of empirically derived similarity information.

Perceptual organization and simplicity

Categorization and perceptual organization, albeit su-
perficially dissimilar processes, are nevertheless quite
interlinked. Clearly categorization depends on percep-
tual organization, as how we perceive a set of objects
will by necessity determine how we will categorize
them. However, there is also a very extensive research
tradition on effects of categorization on perceptual or-
ganization, showing that the way we categorize a set of
objects is likely to affect how we perceive them (e.g.,
Goldstone, 1994; Harnad, 1987; Schyns & Oliva,
1998). Thus, we could maybe usefully look for a prin-
ciple in perceptual organization to ground our model of
unsupervised categorization.

A very influential approach in perceptual organiza-
tion is the simplicity principle (e.g., Pomerantz and
Kubovy, 1986; Chater, 1999), according to which the
perceptual system is viewed as finding the simplest
perceptual organization consistent with the sensory
input. In fact, the simplicity principle has been recently
shown to be equivalent to the most influential alterna-
tive, the likelihood principle (Chater, 1996).

In a simplicity framework, the notions of “interpre-
tation” and “encoding” are central. At an intuitive level,
encoding of information results in some data; simplicity
is just a strategy for choosing an interpretation for the
data. If we have a sequence like “ababababab” we
could interpret it as “5 x (ab)”; but, clearly, there are
many alternative interpretations (e.g., “a, 2 x (baba),
b”). According to simplicity, the preferred theory / in-



terpretation is the one that minimizes the sum of the (1)
complexity of the theory and (2) the complexity of the
data when encoded with the theory.

The simplicity model of unsupervised cate-
gorization

Full details of the model are given in Pothos & Chater
(1998) and Pothos & Chater (in press). Here, we only
attempt to qualitatively discuss the main features of the
model.

There has been extensive research on the importance
of information in categorization, other than similarity.
However, there must be an important component of
categorization research that is driven primarily by
similarity as well. This would be particularly evident in
the case of grouping novel objects, since there would
be no a priori expectations for such objects. Also, in-
corporating general knowledge influences in models of
categorization has been notoriously difficult. Thus, in
this work we will restrict the simplicity model to a ver-
sion whereby general knowledge effects are not taken
into account.

We assume that the information encoded for a set of
objects is information about how similar each object is
to each other. A possible “interpretation” for this in-
formation is in terms of groups of categories; in other
words, the cognitive system could attempt to recognize
structure in the encoded similarity information that is
best captured by dividing the objects into groups.

To determine which grouping is most suitable we
need to consider the following terms:

code length for similarities in terms of grouping + code
length for grouping (1)

code length for similarities without groups (2)

The simplicity principle will support the classification
such that (1) is a lot less than (2).

Translating the above intuition into a computational
model, we consider similarity information of the form
(object A, object B) more or less similar to (object X,
object, Y). The advantage of this approach is that the
applicability of our categorization model is not re-
stricted by representational assumptions for the objects
to be categorized. For example, we can equally well
apply the model, whether the items to be categorized
are represented as bundles of features, points in some
multidimensional space, or even simply in terms of
pairwise similarities.

We define a group or a category as a collection of
objects such that the similarities between any two ob-
jects in the group are greater than the similarities be-
tween any two objects between groups. In this way, the
similarity relations that would have had to be specified

without groups are reduced. For example, if we have
objects A, B, and C, and we put objects A and B in one
group, while object C is on its own, then by the above,
this is equivalent to saying that the similarity between
A and B is greater than between A and C, and B and C.
In this way, we have an “operative” definition of a
category.

Thus, with groups we have some information gain,
or reduction in code length, since we do not need to
specify as many similarity relations; this would be the
“gain” associated with a classification. However, it will
rarely be the case that all the specified similarity rela-
tions will be correct; in other words, a particular
grouping might specify that objects A, B are more
similar to objects X, Y, when in fact it is the other way
around. Thus, the overall classification gain will be
reduced by the costs of correcting the errors; there is an
additional cost required to specify which is the par-
ticular classification used (for the actual formulae and
derivations see Pothos & Chater, 1998).

Experimental investigation

We wish to illustrate the applicability of the model with
empirically derived similarity information about the
items to be categorized. This approach is consistent
with a growing trend in categorization research to take
into account the well documented similarity structure
changes that take place as a result of categorization.

The simplicity model can be used to predict the clas-
sification that should be most psychologically intuitive
to naive observers for a set of objects. We can thus ex-
amine the extent to which the classifications spontane-
ously produced by naive observers are compatible with
the simplicity model predictions.

Materials

We used 11 items that varied along two dimensions
(the physical space representation is shown is Figure 1;
a 12th item had to be eliminated from analyses as it was
not the same in the ratings and categorization tasks).
The two dimensions defined the size of a square and
the size of the filled-circles texture inside the square
(see Figure 2 for an example). The stimuli were pre-
sented in a folder, printed individually on A4 paper in
black ink for the categorization task, and on a 15"’
Macintosh computer screen when participants were
asked for similarity ratings.
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Figure 1: The parameter space representation of the
stimuli.
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Figure 2: An example of the stimuli used.

Procedure

29 University of Oxford students were paid for their
participation. In the first part of the study, they received
instructions saying that they were about to receive a set
of items and that they would have to divide them into
groups “in a way that seems intuitive and natural, so
that more similar items end up in the same group.”
They were also told that although there was no limit on
how many groups they could use, they should not use
more that what they thought necessary. The order in
which the stimuli were arranged in the folder was ran-
domized for each participant.

After participants had classified the items, they per-
formed the ratings task on a computer. They were in-
structed that they were about to see the items of the first
part in pairs and that their task was to indicate the
similarity between the items in each pair on a 1 to 9
scale, where a “1” would correspond to most similar
items and a “9” to items that were most different. In
particular, for each pair, the first item was presented for

one and a half seconds, then there was a fixation point
for 250ms, the second item appeared for one and a half
seconds, a blank screen for 250ms, and a 1-9 ratings
scale. The order in which each item appeared in a pair
was counterbalanced so that we had two ratings per
participant for each pair. Two randomized different
orders were used for the ratings part of the experiment.

Results and Discussion

The similarity ratings were averaged into a large simi-
larity matrix for all the items. This matrix was made
symmetrical across the diagonal by using the arithmetic
mean and also self-similarities were set to O (corre-
sponding to maximum similarity). The simplicity
model predictions were computed on the basis of these
ratings. The best compression categorization involved
three groups, with items 0-3, 4-7, and 8-10 in each
group (item labels correspond to Figure 1).

In order to determine whether some of the observed
categorizations were more likely than others we identi-
fied all the distinct categorizations produced by partici-
pants (“distinct” solutions), as well as the number of
times participants divided the items in the way pre-
dicted by the simplicity principle. If there had been no
preference for any particular categorization, we as-
sumed that all distinct solutions would have been pro-
duced with a roughly equal frequency, given by the
ratio (total number of groupings) / (number of distinct
groupings). Using chi-square tests we can then examine
whether the frequency of any of the classifications pro-
duced would be different from that computed by
chance. This was the case only for the classification
predicted by the model (chi2(1) = 84.8, p<.001; the
frequency of this categorization was 11 times, out of
29).

To obtain some insights into participants’ perform-
ance, we employed a non-metric MDS procedure to
construct a putative internal spatial representation of
the items; such a procedure is not related to the appli-
cation of the simplicity model (which operates directly
on the similarity ratings). Figure 3 shows the resulting
MDS solution (all MDS procedures run with Euclidean
metric). The three groups in the MDS solution corre-
spond exactly to the three groups in Figure 1-but the
items within each cluster are effectively indistinguish-
able in the internal space.
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Figure 3: Labels items 0-3, “2” items 4-7, and “3”
items 8-10, where item labels refer to Figure 1.

We next divided participants into homogeneous
groups, and examined these groups individually. To do
this, we looked at the groupings produced in the first
part of the experiment, and then classified these
groupings themselves (using the Rand index as a meas-
ure of the similarity between pairs of groupings, and
the simplicity model as the clustering procedure). There
were two main groups of categorizations, call them
Group A (which contained the best compression solu-
tion; five different categorizations, that were produced
by 14 out of the 29 participants) and Group B (nine
solutions from 13 participants), as well as a smaller
group which we shall not consider further (two other
categorizations, from two participants).

We then separately considered the similarity ratings
of participants whose groupings were in Groups A and
B. The MDS procedure for Group A resulted in a spa-
tial arrangement of the stimuli, identical to that shown
in Figure 3. Figure 4, the MDS solution for Group B
participants, is dramatically different; although some
aspects of the nearest-neighbors structure seem to have
been somewhat preserved (so that, for instance, points
that were close to each other originally are still close to
each other) the overall arrangement has been distorted
so as to no longer reflect the obvious three groups cate-
gory structure present in the Group A representation of
the stimuli. In conclusion, it looks as if people who
identified the best compression categorization (Group
A), subsequently rated the similarity of different stimuli
with each other in a way fully compatible with this
category structure. This finding constitutes the first
evidence that unsupervised classification affects the
perceived similarity structure of a set of objects (see,
e.g., Goldstone, 1995; Goldstone, Steyvers & Larimer,
1996 for corresponding evidence in supervised classifi-
cation, that is categorization processes whereby catego-
ries are pre-specified). Future research will extend the
present methodology to examine the extent to which
simplicity might always be optimized with respect to

how different individuals perceive the similarity struc-
ture of a set of objects.
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Figure 4: MDS solution for Group B participants.

To summarize, analysis of the similarity ratings of
the stimuli confirmed the predictions of the simplicity
model. Moreover, inspection of the MDS solutions
showed that the categorization appears to have influ-
enced similarity judgments, implying that perceived
similarity may be affected by unsupervised classifica-
tion.

References

Ahn, W. & Medin, D. L. (1992). A two-stage model of
category construction. Cognitive Science, 16, 81-121.

Anderson, J. R. (1991). The adaptive nature of human
categorization. Psychological Review, 98, 409-429.

Chater, N. (1996). Reconciling Simplicity and Likeli-
hood Principles in Perceptual Organization. Psycho-
logical Review, 103, 566-591.

Chater, N. (1999). The Search for Simplicity: A Fun-
damental Cognitive Principle? Quarterly Journal of
Experimental Psychology, 52A, 273-302.

Corter, J. E. & Gluck, M. A. (1992). Explaining Basic
Categories: Feature Predictability and Information.
Psychological Bulletin, 2, 291-303.

Fisher, D. (1996). Iterative optimization and simplifi-
cation of hierarchical clusterings. Journal of Artifi-
cial Intelligence Research, 4, 147-179.

Goldstone, R. L. (1994). Influences of categorization
on perceptual discrimination. Journal of Experimen-
tal Psychology: General, 123, 178-200.

Goldstone, R. L., Steyvers, M., & Larimer, K. (1996).
Categorical perception of novel dimensions. In Pro-
ceedings of the Eighteenth Annual Conference of the
Cognitive Science Society. Hillsdale, NJ: Erlbaum.

Handel, S. & Preusser, D. (1970). The free classifica-
tion of hierarchically and categorically related stim-
uli. Journal of Verbal Learning and Verbal Behavior,
9,222-231.



Harnad, S. (Ed.) (1987). Categorical Perception. Cam-
bridge: Cambridge University Press.

Homa, D., Sterling, S., & Trepel, L. (1981). Limita-
tions of exemplar-based generalization and the ab-
straction of categorical information. Journal of Ex-
perimental Psychology: Human Learning and Mem-
ory, 7,418-439.

Kaplan, A. & Murphy, G. L. (1999). The acquisition of
category structure in unsupervised learning. Memory
& Cognition, 27, 699-712.

Katz, J. & Fodor, J. A. (1963). The Structure of a Se-
mantic Theory. Language, 39, 170-210.

Krzanowski, W. J. & Marriott, F. H. C. (1995). Multi-
variate Analysis, Part 2: Classification, Covariance
Structures and Repeated Measurements. Arnold:
London.

Michalski, R. & Stepp, R. E. (1983). Automated con-
struction of classifications: conceptual clustering ver-
sus numerical taxonomy. IEEE Transactions on pat-
tern analysis and machine intelligence, Vol. PAMI-
5, 396-410.

Murphy, G. L. & Medin, D. L. (1985). The Role of
Theories in Conceptual Coherence. Psychological
Review, 92, 289-316.

Nosofsky, R. M. (1989). Further tests of an exemplar-
similarity approach to relating identification and
categorization. Journal of Experimental Psychology:
Perception and Psychophysics, 45, 279-290.

Pomerantz, J. R. & Kubovy, M. (1986). Theoretical
Approaches to Perceptual Organization: Simplicity
and Likelihood principles. In: K. R. Boff, L. Kauf-
man & J. P. Thomas (Eds.), Handbook of Perception
and Human Performance, Volume II: Cognitive Pro-
cesses and Performance, 1-45. New York: Wiley.

Pothos, E. M. & Chater, N. (1998). Rational Catego-
ries. In Proceedings of the Twentieth Annual Confer-
ence of the Cognitive Science Society, 848-853, LEA:
Mahwah, NJ.

Pothos, E. M. & Hahn, U. (2000). So concepts aren't
definitions, but do they have necessary *or* suffi-
cient features?. British Journal of Psychology, 91,
439-450.

Pothos, E. M. & Chater, N. (in press). Basic Categories
by Simplicity. In M. Ramscar, U. Hahn, E. Cambou-
ropoulos, & H. Pain (Eds.) Similarity and Categori-
zation. Oxford: Oxford University Press.

Rosch, E. & Mervis, B. C. (1975). Family Resem-
blances: Studies in the Internal Structure of Catego-
ries. Cognitive Psychology, 7, 573-605.

Schyns, P. G. & Oliva, A. (1999). Dr. Angry and Mr.
Smile: When categorization flexibly modifies the
perception of faces in rapid visual presentations.
Cognition, 69, 243-265

Wills, A. J. & McLaren, 1. P. L. (1998). Perceptual
learning and free classification. Quarterly Journal of
Experimental Psychology, 51B, 235-270.



