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Abstract

Models of graph-based reasoning have typically account-
ed for the variation in problem solving performance with
different graph types in terms of a task analysis of the
problem relative to the particular visual properties of each
graph type (e.g. Lohse, 1993; Peebles, Cheng & Shadbolt
1999, submitted). This approach has been used to explain
response time and accuracy differences in experimental
situations where data are averaged over experimental con-
ditions. A recent experiment is reported in which par-
ticipants’ eye movements were recorded while they were
solving various problems with different graph types. The
eye movement data revealed fine grained scanning and
fixation patterns that are not predicted by standard task
analytic models. From these eye-movement studies it is
argued that there is a missing level of detail in current task
analytic models of graph-based reasoning.

Introduction
The ability to retrieve and reason about information in
graphs and diagrams is a skill which requires the com-
plex interaction of three primary elements: the cognitive
abilities of the user, the graphical properties of the exter-
nal representation, and the requirements of the task. Sev-
eral frameworks have been proposed to understand inter-
active behaviour of this sort. In the area of graph-based
reasoning, Peebles, Cheng & Shadbolt (1999, submitted)
have proposed the GBR model incorporating these three
factors. Gray (2000; Gray & Altmann, 2000) has pro-
posed the Cognition-Task-Artifact triad within which to
characterise interactive behaviour in the related contex-
t of human-computer interaction. This latter framework
has recently been further developed by Byrne (in press)
to encompass the perceptual and motor capabilities of the
user, termed Embodied Cognition.

The main aim of these models and frameworks is to
aid the development of detailed cognitive models of the
cognitive, perceptual and motor processes involved in the
tasks under study. Constructing cognitive process mod-
els that are grounded in cognitive theory allows the incor-
poration and testing of relevant cognitive factors such as
the required declarative and procedural knowledge, the
strategies adopted, and the limitations of working mem-
ory. This approach contrasts with that of cognitive task
analysis which simply specifies the cognitive steps re-
quired to perform the task.

In the area of graph-based reasoning, Lohse (1993)
developed the GOMS class of task analysis techniques
(Card, Moran, & Newell, 1983; Olson & Olson, 1990;
John & Kieras, 1994) by including additional cognitive
parameters to produce a cognitive model which simulates
how people answer certain questions using line graph-
s, bar graphs and tables. Lohse’s model was based on
the assumption that graph knowledge is represented as
graph schemas (Pinker, 1990) which allow the recogni-
tion and interpretation of different classes of graph. In-
cluded in a graph schema are task-specific rules that de-
fine sequences of procedures for retrieving information
from the graph given a particular information-retrieval
task. Lohse’s model predicted the time to answer a given
question by assuming that people scanned the graphical
representation in a manner which produced an optimal
sequence of eye movements that minimized the number
of saccades and fixations to reach the target location.

In the Graph Based Reasoning (GBR) model (Peebles
et al., 1999, submitted), a similar set of assumptions was
employed to explain several results of experiments inves-
tigating the factors affecting reasoning with information-
ally equivalent (Larkin & Simon, 1987) graphs of dif-
ferent types from the same general class; Cartesian co-
ordinate (x–y) graphs. Figure 1 shows the types of graph
used in our experiments. The graphs are informational-
ly equivalent as the both encode the same two functions
between time and the variables A and B. The Function
graph in Figure 1a represents time on the x axis and the
A and B variables on the y axis whereas the Parametric
graph in Figure 1b represents the A and B variables on
the x and y axes respectively while time is plotted as a
parameterizing variable along the curve.

Although the two graphs assign different variables to
their axes, they would be considered similar in sever-
al important ways identified in the literature. Firstly,
both are Cartesian graphs using a two dimensional co-
ordinate system to relate quantities and represent magni-
tudes. It is likely, therefore, that both graphs invoke sim-
ilar general schemas and interpretive processes (Pinker,
1990; Kosslyn, 1989). Secondly, both are simple line
graphs and consequently share many of the same general
interpretive rules. Furthermore, it is likely that inferences
from both graphs are influenced by the same set of bias-
es (Carpenter & Shah, 1998; Gattis & Holyoak, 1996;
Shah & Carpenter, 1995). Finally, the graphs are infor-



mationally equivalent as they have been generated from
the same data set.
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Figure 1: Informationally equivalent function and para-
metric graphs

Despite these similarities, however, in previous ex-
periments we have demonstrated that for a wide range
of questions, parametric and function graph users differ
substantially in both the time it takes to respond and in
their rates and patterns of errors (Peebles et al., 1999,
submitted). The GBR model has been successful in ex-
plaining why such differences occur with these graph
types despite their many common properties. Using the
graphs in Figure 1 as an example, we found in our ex-
periments that when participants were asked to retrieve
the value of A when the value of B is 1, responses from
parametric graph users were significantly more rapid and
accurate than those from the function graph users. The
GBR model explains these differences in terms of the
optimal visual scan path the users follow through the
graph. The variability in responses is apparent from the
sequence of hypothesised saccades in the two graphs. In
Figure 1a, the sequence of saccades is m, n, o, whereas
in Figure 1b the process requires just two saccades, as
shown by the line sequence a, b. The higher probability
of an erroneous response using the function graph was
explained by the additional number of possible incorrect
saccades that the function graph users may make.

Although these optimality assumptions are useful in
that they provide an account of differences in mean RT
and error data for the different graph conditions, it re-
mains an open question, however, whether they gloss
over important cognitive and strategic factors at an indi-
vidual level. For example, graph users may be required to
re-encode items of information that have been lost from
working memory during the course of processing. In ad-
dition, given that graph users are aware that information
is available for re-scanning at all times, it is possible that
they may make a strategic decision to trade off addition-
al saccades for a reduction in working memory load. If
this is the case, then the current analyses may miss out an
important level of detail which sheds light on the cogni-
tive load that these tasks are imposing and the strategies
by which graph users optimise their retrieval procedures.
Furthermore, information at this level of detail will pro-
vide valuable constraints on cognitive models of these
reasoning processes.

To address these issues, we devised an experimen-
t in which participants were asked to solve some sim-
ple tasks using different graph types of the same general
class which, based on the optimality assumptions above,
would be predicted to produce different response pattern-
s. These predictions can be elaborated in terms of an op-
timal sequence of fixations required to solve the given
task. To test these optimality assumptions and predic-
tions, therefore, some of the participants’ eye movements
would be recorded as they solved the problems.

One of the most common tasks carried out when using
a graph is to elicit the value of one variable correspond-
ing to a given value of another. This task was chosen
for the experiment as it is so widely performed and be-
cause the procedures involved are relatively simple. The
knowledge required to carry out these tasks is primar-
ily the sequence of fixations required to reach the giv-
en location in the graph representing the given value of
the given variable and then from there to the target loca-
tion representing the corresponding value of the required
variable. In previous research, however, we have discov-
ered that the effectiveness of a particular graphical repre-
sentation for retrieving the required information depends
on the details of the task, i.e. which variable is given and
which is sought (Peebles et al., 1999, submitted).

Experiment

Method
Participants and materials Forty-four undergraduate
and postgraduate psychology students from the Univer-
sity of Nottingham were paid £3 to take part in the ex-
periment. The experiment was carried out using two PC
computers with 17 in displays. A further four partici-
pants from the same population were paid £5 to partic-
ipate in the eye-movement study. The eye tracker em-
ployed in the experiment was an SMI iView system using
a RED II desktop pupil/corneal reflectance tracker with a
sampling rate of 50 Hz. This system records eye move-
ments at 20 ms intervals remotely from a position in front
of the experimental computer display. Although the sys-
tem contains an automatic head movement compensation
mechanism, to further reduce recording error due to head
movement, participant’s heads were restrained in a frame
fixed to the table.

The stimuli used in the experiment were four graphs,
shown in Figure 2, depicting the amount (in millions of
units) of UK offshore oil and gas production between t-
wo decades, 1970–1979 and 1980–1989. The graphs and
data sets were designed so that the independent variable
(IV—year) and the two dependent variables (DVs—oil
and gas) all had ten values ranging from 0 to 9 and that
the full range of these values was represented by the data
points for oil and gas in both decades.

Participants were seated approximately 80 cm from
the 72 ppi computer display. The graphs were 15.5 cm
square (including axis labels), corresponding to approxi-
mately 11.1

�

of visual angle. The characters representing
variable values were 0.4 cm high (approximately .21

�

of
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Figure 2: Function and Parametric Graphs Used in the Experiment

visual angle) while those for the axis labels and question-
s were 0.4 cm and 0.5 cm high (approximately .29

�
and

.36
�

of visual angle) respectively. Axis ticks were spaced
1.5 cm (approximately 1.1

�
of visual angle) apart.

The full range of values for each of the variables was
used to produce 120 questions. These questions all had
the same basic structure and were of three types; DV–
DV and DV–IV questions gave the value of one of the
dependent variables and required the corresponding val-
ue of the second DV or the IV respectively, while IV–
DV questions gave a value of the independent variable
and required the corresponding DV value to be produced.
There were 20 of each of question type and participants
were required to answer all 60 for both decade graphs,
producing a total of 120 questions.

Design and Procedure The experiment was a mixed
design with one between-subjects variable, (graph type)
and two within-subjects variables (question type and
graph number). Participants were randomly allocated to
one of the two graph type conditions producing a total
of 22 participants per condition in the main experiment
and two participants per condition in the eye movement
study. During the experiment, the two graphs were pre-
sented alternately with the first graph being selected at
random. On each trial, a graph would be presented with
a question above it. The questions were presented in a
form so that the minimum amount of text was shown.
For example, the question GAS = 2, OIL = ? requires the
value of oil when gas is equal to 2 to be found. When
a year value was required, the final items of text in the
question would be YEAR = 197? or YEAR = 198? de-
pending on the current graph being presented and partic-
ipants were instructed beforehand to enter only the final
number of the target year. Each element of the ques-
tion was centered on a co-ordinate point which remained
invariant throughout the experiment with approximately
3.5 cm (approximately 2.5

�
of visual angle) between the

centres of adjacent text items. Together with the graph
and question, a button labelled Answer appeared in the
top right corner of the window. Participants were in-
structed to click on this answer button as soon as they
had obtained the answer to the question. Response times
were recorded from the onset of a question to the mouse

click on the answer button. When this button was clicked
upon, the button, graph and question were removed from
the screen and a circle of buttons labelled clockwise from
0 to 9 appeared centered on the answer button. Partici-
pants entered their answers by clicking the appropriate
number button. When the number button was clicked,
the next graph, question, and answer button appeared on
the screen. This method was devised so that participants
in the eye movement study would not have to take their
eyes away from the screen to enter answers, as would be
the case if using the keyboard.

Before starting the experiment, participants were giv-
en as much time as necessary to become familiar with
the two graphs in their condition and were also provided
with an opportunity to practice entering numbers using
the circle of number buttons and the mouse. Participants
were asked to answer the questions as rapidly and as ac-
curately as possible

Results

Response accuracy and latency data The proportion-
s of correct responses and mean response times (RTs)
for each of the question types for the two graphs in each
condition are presented in Figure 3. Confirming the rel-
ative simplicity of the experimental tasks, the data reveal
high levels of accuracy for all three question types in both
graph conditions. An ANOVA on the response accuracy
data, however, revealed a significant effect of question
type F(2, 239) = 28.187, p � 0.01, MSE = 0.123 indi-
cating that some types of question were generally more
demanding than others. The nature of this effect can be
clearly seen in Figure 3. In both graph conditions, more
errors were made carrying out the DV–DV task than the
other two while the IV–DV task was the most accurately
responded to.

While there is little variability in the accuracy of re-
sponses between conditions, the time taken by partici-
pants in the two groups to make these responses varies
significantly both between conditions and within each
condition according to the type of question being at-
tempted. An ANOVA on the RT data revealed significant
effects of question type F(2, 239) = 18.447, p � 0.01,
MSE = 4974038, and graph number F(1, 239) = 5.76, p

� 0.05, MSE = 1223302 and significant interactions be-
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Figure 3: Plots of mean correct responses and RTs for function and parametric graph conditions for each question type

tween graph type and question type F(2, 239) = 36.314,
p � 0.01, MSE = 9791754 and between graph type, ques-
tion type and graph number F(2, 239) = 3.913, p � 0.05,
MSE = 466423. The nature of these effects and complex
interactions is apparent in Figure 3. In both conditions, it
takes approximately 5 s to read the question and retrieve
the required DV value for a given year. However, to car-
ry out the reverse task and find the year corresponding to
a given DV value takes, on average, over 1 s longer when
using the function graph than when using the parametric
graph. A similar disparity in RT is found when the task
is to retrieve a DV value corresponding to a given DV
value.

In both conditions, errors are evenly distributed over
experiment trials. The mean proportion of correct re-
sponses over the first 10 trials for function and paramet-
ric graphs is .91 and .94 respectively. Over the course of
the experiment, the mean RT for both conditions reduced
by approximately 2 s, the rates of these reductions being
described by power functions with similar slopes.

To analyse the results of the experiment, the display
was divided into five regions in a manner similar to that
employed by Carpenter and Shah (1998). The region-
s, shown in Figure 4, were the same for all four graphs
and define the relevant units of the display for the fixa-
tion analysis: question, graph pattern, x-axis, y-axis, and
answer buttons.

The pattern of RT data from the experiment can be ex-
plained by the GBR model using the optimality assump-
tions and fixation predictions outlined above. The signif-
icant increase in time to answer DV–IV questions using
the function graphs is due to the fact that in the para-
metric graphs, the target values are positioned next to the
given location so that the additional cognitive and per-
ceptual processes required to fixate on the target location
are not required. In this case the optimal sequence of fix-

ations is predicted to be: question, axis, graph, answer
whereas that for the function graphs is: question, axis,
graph, axis, answer.

The DV–DV questions are of the same type as the ex-
ample question given in the introduction and so the s-
maller mean RT in the parametric condition can be ac-
counted for in terms of the previous explanation, name-
ly, that to reach the target location in the function graphs
requires an additional saccade and fixation and the asso-
ciated cognitive operation to retrieve a further step in the
process. So, the optimal sequence of fixations for para-
metric graphs is predicted to be: question, axis, graph,
axis, answer, whereas that for the function graphs is:
question, axis, graph, graph, axis, answer.

For the IV–DV questions, the relative rapidity with
which function graph users are able to answer these ques-
tions compared to others is due to the fact that they are
able to rapidly identify the given year on the x axis and
then carry out the two step process of identifying the tar-
get point on the correct line and retrieving its value from
the y axis. The optimal sequence of fixations for this pro-
cedure is: question, axis, graph, axis, answer. The data
show that this procedure takes approximately the same
time as the corresponding procedure for the parametric
graphs which requires the search of the given year in the
graph and the retrieval of its value from the target ax-
is, the optimal fixation sequence of this procedure being:
question, graph, axis, answer.

The results of the main experiment show that, despite
the numerous similarities that exist between function and
parametric graphs, the type of graph used can significant-
ly affect the time it takes to retrieve the required infor-
mation and that this effect is dependent on the nature of
task. The experiment also showed that the probability of
retrieving incorrect information depends on specific de-
tails of the task, i.e. which variable is given in the ques-



tion and which variable value is being sought. The GBR
model explains these differences in terms of a detailed
task analysis and the assumption of an optimal scan path
through the graph to the target location.

Eye movement data To analyse the eye movement da-
ta, the raw x and y co-ordinate data from the eye track-
er were aggregated into gazes—sequences of consecu-
tive fixations on a display region unbroken by fixations
in other regions (Carpenter and Shah, 1998). The min-
imum duration of a gaze was defined as 100 ms as this
value was sufficiently large to eliminate most saccades,
short fixations and noise in the data while still capturing
all the relevant fixations. The data from each participant
were analysed so that gazes of 100 ms or more in each
region were recorded and a scan path consisting of the
sequence of gazes for each question was produced.

Several interesting patterns emerge from the analysis
of these gaze sequences. Firstly, the average number
of transitions between regions for all questions types,
shown in Table 1, is consistently greater than the opti-
mal number predicted by the GBR model. For all of the
question types, and irrespective of the type of graph be-
ing used, participants made, on average, between three
and four additional transitions in order to reach the solu-
tion. In the majority of cases, these additional transitions
were between the axes and the graph and the question
and the graph as participants rarely fixated upon the an-
swer region until entering an answer. In 31% of all tri-
als, participants made at least one additional gaze on an
axis after having previously fixated upon that axis and
then the graph. A detailed visual analysis of the raw eye
movement data for these trials revealed that in most cas-
es, participants had fixated upon a given axis value and
then proceeded to the plot point in the graph correspond-
ing to that value. Upon reaching this point, an additional
saccade was then made to the axis to check that the value
was in line with the point.

Graph Pattern

Answer
Question

Y
 A

xi
s

X Axis

Figure 4: Five regions of the display defined for the fixa-
tion analysis

From the eye movement data analysis, it is clear that,
although the participants did, in general, solve the vari-
ous problems by following the optimal gaze paths char-
acterised by the GBR model, they made considerably
more gazes than is predicted by the model. Although
it is likely that many of these additional transitions are

due to checking procedures of the sort outlined above, it
is possible that common patterns in the gaze sequences
indicate limitations of working memory or problem solv-
ing strategies adopted by graph users. For example, in
62.7% of all trials and irrespective of the question type
being attempted, participants made at least one addition-
al gaze on the question after having initially gazed upon
the question and subsequently the graph. This pattern
suggests two possible explanations. The first is that par-
ticipants have initially encoded the three elements of the
question but are required to re-encode certain parts of it
that are unable to be retrieved from working memory due
to the cognitive load involved in carrying out the prob-
lem solving procedures. The second explanation is that
participants have adopted a strategy by which only the
initial part of the question is encoded and the second part
is encoded only when required. According to this expla-
nation, in the majority of trials, participants effectively
break the problem into two sections, the first to get to the
given location in the graph, the second to move from the
given location to the target location corresponding to the
solution. It is also possible that the observed gaze pat-
terns may result from a combination of these factors if,
during the course of the experiment, participants adop-
t the above strategy in order to minimise the number of
question element retrieval failures.

Table 1: Mean number of gaze transitions between dis-
play regions for Function and Parametric graphs ob-
served (Obs) for each question type, and the optimal (Op-
t) number predicted by the GBR model

Question Function Parametric
Type Obs Opt Obs Opt

DV–DV 7.66 5.0 8.21 5.0
IV–DV 7.86 5.0 8.90 4.0
DV–IV 8.05 5.0 8.05 4.0

Discussion
Reasoning with Cartesian graphs involves a complex in-
teraction between the perceptual and cognitive abilities
of the reasoner, the visual properties of the graph, and the
specific task requirements. Models of graph-based rea-
soning (e.g. Lohse, 1993; Peebles et al., 1999, submit-
ted) have largely focussed on providing a detailed analy-
sis of the task in relation to the the visual properties of the
graph and explaining differences in performance in terms
of the interaction of these two elements. These models
have been successful in accounting for variations in ag-
gregate RT data between users of different graph types
by characterising an optimal sequence of fixations based
on the task analysis that will achieve the goal. Error data
is also explained by hypothesising sets of plausible devi-
ations from these optimal sequences.

To produce detailed cognitive models of graph use
grounded in cognitive theory, however, then the third,



cognitive element of the triad must be fully incorporated
into these accounts. The explanatory and predictive pow-
er of cognitive models in complex interactive domain-
s compared to cognitive task analyses has been demon-
strated (e.g. Gray, John, & Atwood, 1993). By incorpo-
rating such cognitive factors as the user’s knowledge, s-
trategies and working memory capacity into graph-based
reasoning models, the explanatory and predictive power
of these models can be increased and greater insights into
the processes and factors affecting these complex inter-
actions can be obtained.

Although the standard experimental variables of RT
and error rates provide some information upon which
to formulate and test cognitive hypotheses, much rich-
er data is obtained when eye movements are recorded
during the experiment. In such a visual domain as graph-
based reasoning, eye movements are an important source
of information regarding how people acquire and pro-
cess graphical information and the strategies they adop-
t when interpreting and working with graphs. This has
been demonstrated by Carpenter and Shah (1998) in their
analysis of eye movements in graph comprehension tasks
which revealed the cyclic nature of the pattern recogni-
tion and cognitive processes involved in graph compre-
hension.

In contrast, the present experiment provides an exam-
ple of how eye movement data can be used in the analy-
sis of more goal directed graph-based reasoning tasks in
which the aim of the interaction is not to simply under-
stand the graph but to retrieve specific information from
it. The results of the main experiment showed that the
ability of people to retrieve the same information from
computationally inequivalent but visually similar Carte-
sian graphs can be significantly affected by the type of
graph used. A plausible explanation of these differences
can be provided by the GBR model in terms of an anal-
ysis of the task and an assumption of the optimal scan
path through the graph to the target location represent-
ing the problem solution. These results support and ex-
tend the findings of previous experiments (Peebles et al.,
1999, submitted) and provide further evidence that the G-
BR model can account for data that cannot be explained
solely in terms of the visual properties of the graphs.

The actual scan paths revealed by the eye movement
study show, however, that these optimality assumption-
s serve as an approximation that can be applied to data
aggregated over experimental conditions but which tend
to obscure the detailed sequences of saccades made by
individuals. It is clear that further research is required
to investigate the cognitive factors underlying these sac-
cade patterns in greater detail. It is also clear, howev-
er, that cognitive models of graph-based reasoning must
incorporate more sophisticated cognitive mechanisms in
order to account for these findings.
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