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Abstract

Instructed category learning tasks involve the acquisition
of a categorization skill from two sources of information:
explicit rules provided by a knowledgeable teacher and
experience with a collection of labeled examples. Stud-
ies of human performance on such tasks have shown that
practice categorizing a collection of training examples
can actually interfere with the proper application of ex-
plicitly provided rules to novel items. In this paper, the
normativity of such exemplar-based interference is as-
sessed by confronting a model of optimal memory per-
formance with such a task and comparing the “rational”
model’s behavior with that exhibited by human learners.
When augmented with a rehearsal mechanism, this opti-
mal memory model is shown to match human respond-
ing, producing exemplar-based interference by relying on
memories of similar training set exemplars to categorize
a novel item, in favor of recalling rule instructions.

Introduction

Contemporary studies of human category learning have
tended to focus on the acquisition of general knowledge
about a new concept exclusively from exposure to a col-
lection of labeled examples. In common learning envi-
ronments, however, students attempting to learn a cate-
gorization skill are frequently provided with more than a
set of training examples. In particular, learners are often
explicitly instructed in the nature of a new category be-
fore being presented with instances. They are provided
with definitional sentences and explicit rules (e.g., “an
equilateral triangle has at least two sides of the same
length” or “bugs with six legs are insects”). Direct in-
struction of this kind can rapidly provide a basic under-
standing of a new category, while experience with exam-
ples can further shape and refine that initial understand-
ing (Klahr and Simon, 1999).

While it is common for the process of explicit instruc-
tion following and the process of induction from exam-
ples to cooperate to produce quick and robust learning,
there are situations in which these two learning processes
actually compete. Specifically, practice at classifying a
set of training examples can cause learners to violate ex-
plicitly provided categorization rules when classifying
novel items. Extensive experience with examples can
lead learners to categorize novel instances according to
similarity to training items, rather than according to cat-
egorization rules communicated through explicit instruc-

tion. Thus, novel items which are highly similar to train-
ing examples from another category come to be misclas-
sified as a result of practice.

This exemplar-based interference effect, in which ex-
perience with examples interferes with proper instruction
following, was investigated by Allen and Brooks (1991),
as well as others (Brooks et al., 1991; Neal et al., 1995;
Noelle and Cottrell, 2000). Such interference in category
learning is mirrored by similar difficulties in a wide va-
riety of learning contexts, such as when students come
to solve math or science problems by analogy to previ-
ously seen problems, rather than by application of formal
principles and techniques communicated through direct
instruction. Learners appear to have a tendency to disre-
gard perfectly valid explicit advice in favor of knowledge
induced from experiences with examples.

Exemplar-based interference might be seen as the re-
sult of limitations of the cognitive system, such as im-
perfect working memory efficacy (Noelle and Cottrell,
2000) or difficulties recalling and applying abstract, lin-
guistically encoded, rules. There is another alterna-
tive, however. It is possible that human learners neglect
explicit instructions in favor of experienced exemplar-
similarity information because the latter form of infor-
mation tends to be more reliable in a wide variety of
learning contexts. Exemplar-based interference may be
the result of an essentially normative process of weight-
ing sources of category information according to the pre-
viously established utilities of those sources.

There are many aspects of common learning situations
which may encourage students to rely more heavily on
examples than on explicit rules. Consider, for example,
how the instructions provided by teachers are frequently
approximate and heuristic. Advice is often implicitly
limited to a particular range of circumstances, and there
are often exceptions, even within this range, to explic-
itly provided rules. Also, teachers are sometimes in er-
ror. In short, human learners may have strong reasons
to doubt the perfect accuracy of offered categorization
rules. In comparison, exemplar similarity may be seen
as a highly reliable indicator of category membership.
Most categories, after all, involve clusters of similar ob-
jects, suggesting that similarity might be the best tool for
predicting the category labels of novel instances.

Even if considerations of teacher reliability are ig-
nored, there are other rational reasons for a learner to



rely preferentially on training experiences. In general,
recalling past experiences with features similar to those
of the current situation is often more useful than recall-
ing dissimilar experiences. Thus, when faced with the
task of categorizing a novel stimulus item, learners may
be naturally inclined to recall other similar items rather
than an explicit rule, which, due to its linguistic encod-
ing, may bear little surface similarity to the situation at
hand. Also, the recollection of experiences which are re-
cent and frequently recurring is, on average, more useful
when facing a novel challenge than recalling rare expe-
riences from one’s distant past. Thus, when performing
an instructed category learning task, it may be reason-
able for a learner to selectively recall the training items
which were recently and repeatedly studied in favor of a
briefly presented rule. In short, we may conjecture that
exemplar-based interference arises from a rational ten-
dency to rely on similar, recent, and frequent past expe-
riences when faced with a novel situation.

In order to evaluate this conjecture, this paper reports
on the modeling of the exemplar-based interference re-
sults of Allen and Brooks (1991) using the normative,
or “rational”, account of memory formulated by Ander-
son (1990). The goal is to investigate the degree to
which exemplar-based interference can be explained in
terms of a Bayes optimal learning process, given some
assumptions about the common demands placed on hu-
man memory. The human performance results are re-
viewed first, followed by a description of Anderson’s op-
timal memory model. The results of applying the model
to this domain are then presented.

Human Performance

Allen and Brooks (1991) performed a number of exper-
iments demonstrating the way in which experience with
labeled training exemplars can interfere with instructed
rule following. In their Experiment 1, learners were
asked to categorize cartoon illustrations of fictional an-
imals into one of two categories, based on how the ani-
mals were said to construct their homes: the “builders”
and the “diggers”. The appropriate category for each
animal was strictly determined by it’s physical features.
Each animal was composed of specific selections for five
binary attributes: angular body shape or rounded body
shape, spots or no spots, short legs or long legs, short
neck or long neck, and two legs or four legs. Only three
of these attributes were ever relevant for classification,
however: body shape, presence or absence of spots, and
leg length. The animals were always depicted against
color backgrounds, displaying four different outdoor en-
vironments. From this space of 2> x 4 = 128 different
possible stimuli, only 16 were actually used. These 16
items were carefully chosen to include two animals with
each possible level of the three relevant attributes. The ir-
relevant features were selected so that each stimulus item
would have exactly one “partner” item — an item which
differed from it only in the presence or absence of spots.
Otherwise, each animal differed from each other animal
in at least two attributes.

Experimental participants were provided with explicit
categorization rules for discerning the “builders” from
the “diggers”. These always took the form of “2 of 3”
rules, in which a target category was described as all an-
imals with at least two of a list of three features (e.g.,
builders have two or more of the following features: an-
gular body shape, spots, long legs). The rules were care-
fully chosen so that the 16 stimuli were equally split be-
tween the two categories. Also, the exemplars were par-
titioned into a training set and a testing set so that no two
“partnered” items were in the same set. This resulted in
exactly half of the testing set items having their partner
items in the opposite category. These testing items were
the ones for which interference was predicted.

The learners were presented with a training phase
which consisted of seeing each of the 8 training set items
five times, presented in a random order, for a total of 40
trials. When a stimulus image appeared on the screen,
learners were to categorize it as quickly as possible,
without sacrificing accuracy. Then, a sequence of two
slides would be shown, illustrating how the animal ac-
tually constructed its home, identifying it as a builder or
a digger. A subsequent testing phase involved solicit-
ing categorization responses from the participants with-
out providing any form of feedback on their decisions.
During this testing phase, each training set stimulus was
presented 4 times and each testing set stimulus was pre-
sented once, for a total of 40 testing trials.

There were two main results of this experiment. First,
accuracy on the items whose “partners” were in the op-
posite category was much worse than on the other test-
ing set items — around 55% correct as compared to
80%. This was a strong indication of exemplar-based
interference. Second, the response time for correctly
classified items was much larger for items whose “part-
ners” were in the opposite category. This was interpreted
as extra caution on the part of the learners when fac-
ing these “tricky” stimulus items. In other words, even
when exemplar-based interference did not cause error, it
at least caused a slowing of behavior.

Allen and Brooks argued that explicit memories for
individual stimulus items played an important role in the
production of this interference effect. The presentation
of a testing set stimulus was seen as provoking a recol-
lection of that item’s “partner” in the training set, with
the category label of that training set item often being
assigned to the new stimulus in lieu of a label based on
explicit rule application. Following this intuition con-
cerning the centrality of memory to this effect, we have
attempted to model these data using a previously expli-
cated account of optimal memory performance.

Anderson’s Rational Memory

The hypothesis explored here is that the behavior of the
learners examined by Allen and Brooks can be character-
ized as normative — as the natural result of employing
a memory system which is optimal in a Bayesian sense.
This raises the question of how an optimal memory sys-
tem would respond in this domain. Anderson and Mil-



son (1989) have proposed a “rational” model of memory
which might be employed to address this question.

Initially, one may think that an optimal memory is
a perfect memory. Everything is to be stored in every
detail, without degradation, for an unlimited amount of
time. This overlooks one very important function of
memory, however, and that is to recall only those mem-
ories which are relevant to the current task. Without this
ability of selective recall, a memory is essentially use-
less, even if (or especially if) it contains every detail that
was ever experienced. Thus, the task faced by an opti-
mal memory is the identification of those memory traces
which would be most useful in the current situation.

In Bayesian terms, the goal is to determine, for each
memory trace, the probability that that trace would be
useful in the current situation. In Anderson’s model,
this is called the “need probability” of a trace. An opti-
mal memory is seen as one which retrieves exactly those
traces with the highest need probabilities in the current
context. The question then becomes one of calculating
the need probability for each memory trace.

In this model, the need probability is seen as a func-
tion of two components: the desirability of the trace and
the association between the trace and the current context.
The desirability of a memory trace is a measure of the
average utility of the trace — a kind of base rate of ap-
propriateness. The desirability of a trace is to be induced
from its history of use. Recent and frequent retrieval of
a memory trace is indicative of high desirability. The as-
sociation between the trace and the current context is a
kind of normalized likelihood of the context given that
the trace is needed. This term increases the need proba-
bility with increased similarity between the context and
the trace. Both of these components of the need prob-
ability are seen as normative properties of the situation,
unbiased by predispositions of the agent. In brief, the op-
timal memory system computes the need probability of
each memory trace, conditioned on the current context
and on the history of past retrievals of that trace.

Mathematically, if A represents the event that a given
memory trace is needed in the current context, H4 repre-
sents the complete retrieval history of that trace, and Q is
the current context, then the conditional need probability
is P(A|H4 & Q), which may be decomposed as follows:

P(Q|A)
Note that this assumes that Q and Hy4 are both indepen-
dent and conditionally independent with respect to A. If
Q is taken to be composed of a collection of mutually in-
dependent features, then this expression may be written
as:
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This formulation allows for the separate calculation of a
history factor, P(A|Hy,), and a context factor which mea-
sures the association between the memory trace and each
feature of the current context, P(i|A).

The calculation of the history factor requires some as-
sumptions about the desirability of memory traces. Each
trace is taken to start at some desirability level, A9, when
it is first generated. Over the range of memory traces,
these initial desirabilities are assumed to have a gamma
distribution with parameter » and index v. This means
that no traces have an initial desirability of zero, most
have some small initial desirability, and a very few have
a high value for this variable. Furthermore, desirability
is assumed to decay exponentially over time, with a de-
cay rate of 9, where this rate of decay varies over the
traces. It is assumed that § is exponentially distributed
with parameter o.. Together, these assumptions paint a
picture of memory traces with various initial desirabil-
ities, decaying exponentially over time at various rates.
Some memory traces start out with a high desirability
and decay only slowly, like, say, the trace for your own
name. Other traces start out with a low probability of use,
like instructions on how to help a heart attack victim, but
the desirability does not decay much with time. Some
memories are very important but only for a short time,
such as the memory for how much money was handed to
a cashier before receiving change. Most trivia start out
with a low desirability and decay rapidly.

One phenomenon not captured by this characteriza-
tion is the way in which certain memory traces might be-
come very useful again, after a long period of unimpor-
tance. To remedy this oversight, it is assumed that mem-
ory traces occasionally experience “revivals”, at which
time their desirabilities are returned to their original lev-
els. The probability of a revival of a memory trace is
assumed to decay exponentially with the time since the
trace’s introduction, with rate [3.

This formulation provides a characterization of the
probability distribution of possible trajectories of desir-
ability over time. Recall, however, that what is needed is
the distribution of histories of actual trace retrievals:

P(A|H,) = M

P(Hy)
If we assume that a trace is retrieved with a probability
proportional to its desirability, we can compute P(Hy ) by
integrating over all possible values of initial desirability,
decay rate, and revival history. This value is:

P(Hy) = [ [ P(HAI8 &R) p(®) p(R) d5 dR

where 8 is a decay rate and R is a particular revival his-
tory. Note that, in this expression, the initial desirability
has already been integrated over. The main term in this
double integration has the form:

B n+v—1)1 s
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where n is the number of retrievals in Hy, H; is the time
of the ith retrieval, r; is the time of the revival which most



immediately preceded the ith retrieval, and D is:
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where m is the number of revivals, and R; is the time of
the jth revival. All other variables in these expressions
are parameters from the previously discussed probabil-
ity distributions. In short, an expression for the value
of P(Hy) is available in the form of the double integral
above.! This double integral ranges over an infinite space
of 0 values and possible revival histories. In order to esti-
mate the value of this expression, a Monte Carlo integra-
tion may be performed, sampling decay rates and revival
histories from their respective distributions. In this way,
an estimate of P(Hy) can be calculated.

Note that P(A & Hy) can be calculated in exactly the
same fashion as P(Hy) simple by including an additional
retrieval of the memory trace at the current moment. As
previously noted, the ratio of these two probabilities is
the needed history factor, P(A|Hy).

The calculation of the context factor is much easier to
perform, mostly due to some simplifying assumptions.
To compute the contribution of the association between
the trace and the current context, it is assumed that the
trace is composed of features which contribute indepen-
dently to the need probability of the trace. These features
are assumed to be mutually independent, even when con-
ditioned on any feature of the current context. Thus, the
context factor can be written as:

[P _ e _

P
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All that remains is to determine the associative strengths
between features of the current context and features of
the memory trace, expressed as P(x|i), which may be se-
lected in a manner sensitive to the specific stimuli used.
Anderson and Milson (1989) showed that this optimal
memory model matched human performance in many
ways. This calculation of the probability of retrieval was
found to predict recency and frequency effects, and the
model was shown to be consistent with effects arising
from varying the temporal spacing between the presenta-
tions of stimuli. This complex retrieval probability com-
putation accounted for effects of word frequency on the
memorization of word lists, priming effects, and vari-
ous fan effects. Most all of these calculations were per-
formed with fixed values for the distribution parameters:
b=100,v=2,0=2.5,and B = 0.04.

Modeling Exemplar-Based Interference

Following the theorizing of Allen and Brooks (1991),
their instructed category learning task can be viewed as

INote that this expression is different than that provided in
the appendix of Anderson and Milson (1989). When this error
was brought to the attention of the authors, they provided the
software that they had used to perform their calculations. It was
discovered that the error was only in their appendix and not in
their software.

a memory task. When initially given the explicit rule
for categorizing the fictional animals, the learner must
remember this rule, and it must be recalled when it is
needed to categorize a stimulus item. The rule need
not always be recalled, however, as it will be sufficient
in many cases to simply remember a previous presenta-
tion of the specific stimulus being viewed and its corre-
sponding category label. This characterization of the task
makes Anderson’s rational memory model applicable to
an optimality analysis of instructed category learning.

A computer program was written which simulated the
performance of Anderson’s rational memory on the ex-
perimental task examined by Allen and Brooks (1991).
Initial instruction involved the creation of a memory
trace for the given categorization rule, and the retrieval
of that trace for ten consecutive time steps, representing
a study period. After this instruction period, the train-
ing set items were presented to the optimal memory, one
at a time, in the same manner as they were presented
to human participants. With each presentation, the need
probability of each existing memory trace was estimated
in the context of the current stimulus. The memory trace
with the highest need probability among those traces that
contained a category label was retrieved from the mem-
ory.> The category label of the retrieved memory trace
was taken to be the response provided by the optimal
memory system to the current stimulus. Note that the
memory trace for the explicit rule was seen as containing
the correct category label for every stimulus item.

During the training phase, the solicitation of a cate-
gorization judgment from the memory was followed by
the incorporation of performance feedback information.
The memory system responded to feedback by immedi-
ately retrieving the memory trace corresponding to the
current stimulus, or, if this was the first presentation of
the given item, by generating and retrieving a new trace
for the stimulus, marked with the given category label.

After the training phase, the optimal memory experi-
enced a testing phase equivalent to that presented to the
human learners, involving a mix of training set items
and new testing set items. The protocol for memory
trace retrieval during the testing phase was the same as
during training, except that none of the newly gener-
ated memory traces contained category label informa-
tion, as no feedback was provided to the humans during
this phase. Categorization errors made by the memory
system during the testing phase were examined for signs
of exemplar-based interference: relatively poor accuracy
on those testing set stimuli whose “partner” items in the
training set were in the opposing category.

To calculate the history factor of the need probabil-
ities, the same parameters that were used by Anderson
and Milson (1989) were used in this simulation: b = 100,

2During the testing phase it was possible that the memory
trace with the highest need probability would be a memory of
a previous presentation of an unlabeled item. Such a memory
would not be of much use for making a categorization judg-
ment. Thus, this retrieval was restricted only to those memory
traces which contained explicit category information.



—_
(=)

058 —— Rule
- | Instance
h—
< 0.6
2
©
&
= 0.4
D
o
p4
0.2
0.0 T - T T T T T T
0 20 40 60 80

Time

Figure 1: Results from the Optimal Memory Model:
The need probability of the rule memory trace is plotted
against the maximum need probability among the traces
for the training set items. Note that the training phase ran
from time step 11 through 50, and the testing phase ran
from time 51 through 90.

v=2,0=2.5,and B = 0.04. To calculate the context
factor, the presentation of a stimulus was seen as pro-
viding a context consisting of 5 binary features (i.e., the
attributes of the fictional animals) and one 4-ary feature
(i.e., the background). Memory traces were seen as con-
taining these six features, plus an optional category label.
The associational strength between context and trace fea-
tures was taken to be P(x|i) = 0.65. These features were
taken to be pictorial in nature, so the memory trace for
the explicit verbal rule contained none of these features.
The Monte Carlo integration process employed by the
optimal memory model consistently used 100,000 sam-
ples in the calculation of each need probability estimate.

A summary of the results of this computation are
shown in Figure 1. Plotted in that graph is the calculated
need probability of the explicit rule memory trace and
the highest need probability over the training set exem-
plar traces, both over time. Note that the training phase
began at time step 11 and ended at time step 50, and the
testing phase ran from time step 51 through time step
90. The primary result shown in this graph is that the
rule always dominated over the exemplars. This meant
that the rule was always retrieved in preference to traces
for previously viewed items. In other words, the optimal
memory produced perfect rule following behavior with
no sign of interference. Even when the optimal memory
system was modified to stochastically retrieve traces in
a manner proportional to their need probabilities (rather
than always retrieving the trace with the highest need
probability), errors on stimulus items with “partners” in
the opposite category averaged only 12%, as compared

to the 45% error exhibited by humans.

These results were found, however, to be very sensi-
tive to the associational strength that was used, P(x|i). If
this value was substantially increased above 0.65, then
the memories for the training set items would immedi-
ately and persistently dominate over the trace for the rule.
Under such higher settings of the associational strength,
the optimal memory model would produce interference
during the appropriate portions of the testing phase, but
it would not produce expected behavior early in the ses-
sion. In particular, the explicit rule would almost never
be used. In short, this initial simulation of the optimal
memory model of instructed category learning did not
match human performance very well at all.

Anderson had some similar problems with his ratio-
nal memory model when he compared its performance
to human behavior (Anderson, 1990). While human re-
sponding matched his rational memory calculations in
a number of domains, there were some aspects of hu-
man performance which could only be fit by the model
with the help of an additional assumption. This assump-
tion was that the system would covertly rehearse recently
retrieved traces. He added to the memory model a re-
hearsal buffer which contained the 4 most recently re-
trieved memory traces. On each time step, each trace
in the rehearsal buffer had a 0.2 probability of being re-
hearsed on that time step. Rehearsal simply involved the
retrieval of that trace from memory. Increasing the num-
ber of retrievals of a trace through rehearsal would ex-
pand its retrieval history, Hy, and would thereby increase
the history factor, P(A|H,), for that trace. Anderson
added this rehearsal strategy, admitting that it stepped
beyond the bounds of an optimality analysis. Still, such
an augmented analysis was considered worthwhile, since
it could show that human performance is optimal up to
the inclusion of such rehearsal strategies. Indeed, that
was exactly what Anderson demonstrated for a number
of memory phenomena.

Following Anderson’s lead, the optimal instructed cat-
egory learning simulation was augmented with a 4 ele-
ment rehearsal buffer. As in Anderson’s work, the prob-
ability of rehearsal for each item in the buffer was set
to 0.2 per time step. The memory trace for the in-
structed rule was allowed to occupy the buffer and be
rehearsed, just like any other memory trace. The associ-
ational strength parameter was kept at 0.65.

Adding this rehearsal mechanism had a substantial im-
pact on the behavior of the optimal memory, as shown
in Figure 2. With rehearsal, the explicit rule maintained
its perceived utility through much of the training phase,
but was overcome by exemplar similarity by the time the
testing items were presented. This produced consistent
errors on those stimuli whose “partners” were in the op-
posite category. When traces were retrieved stochasti-
cally, in proportion to their need probabilities, the fre-
quency of error on such items was 42%, comparing fa-
vorably to the 45% error exhibited by human learners.
Thus, the rational memory model, when augmented with
rehearsal, appears to be consistent with the observed in-
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Figure 2: Results from the Optimal Memory Model With
Rehearsal: Once again, the need probability of the rule
memory trace is plotted against the maximum need prob-
ability among the traces for the training set items.

terference effect in instructed category learning.

Discussion

In many situations, it is more useful to remember a
highly similar episode from the past than to recall gener-
ally applicable instructions. The rational memory model
of Anderson and Milson (1989) is a formalization of the
process of optimally predicting when such a situation has
arisen. The unaugmented optimal memory model spec-
ifies that, within the experimental design of Allen and
Brooks (1991), the explicit rule should almost always be
preferred if similarity is not very predictive (i.e., when
the associational strength is low), and a memory for spe-
cific instances should almost always be preferred if sim-
ilarity is sufficiently predictive (i.e., when the associa-
tional strength is high). This is not consistent with human
performance, however, where errors on “tricky” testing
set items appeared only 45% of the time.

However, if the rational memory model is augmented
with a rehearsal mechanism, as is needed to explain per-
formance on other memory tasks (Anderson, 1990), the
resulting need probabilities match human performance
much more accurately. This suggests that the interfer-
ence effect of interest may arise in the interaction be-
tween an optimal memory mechanism and a rehearsal
strategy. One prediction of this calculation is that experi-
mental manipulations which hinder rehearsal will reduce
exemplar-based interference.

Note that, in these simulations, the memory trace for
the explicit rule shared no features with the stimulus pre-
sentation contexts. This was intended to model the fact
that the stimuli were pictorial, while the rule was linguis-
tic. In fact, if the features itemized in the explicit rule

are associated with the corresponding stimulus features
with the same associational strength as used elsewhere
in these simulations (0.65), the explicit rule comes to
dominate over exemplar memory traces, even in the aug-
mented model. It is a surprising fact is that this prop-
erty of the model actually reflects human responding.
Exemplar-based interference virtually disappeared when
Allen and Brooks (1991) presented the animal stimuli not
as pictures but as word lists — allowing the stimulus fea-
tures and the explicit rule terms to literally match.

In summary, while this analysis does not rule out other
potential explanations of exemplar-based interference, it
offers the tantalizing possibility that the human tendency
to ignore explicit instructions in favor of information pro-
vided by example experiences may be essentially adap-
tive when considered within the context of the common
demands placed on the cognitive systems responsible for
learning and memory.
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