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Abstract

People are active experimenters, constantly seeking new
information relevant to their goals. A reasonable
approach to active information gathering is to ask
questions and conduct experiments that minimize the
expected state of uncertainty, or maximize the expected
information gain, given current beliefs (Fedorov, 1972;
MacKay, 1992; Oaksford & Chater, 1994). In this paper
we present results on an exploratory experiment
designed to study people’s active information gathering
behavior on a concept learning task. The results of the
experiment suggest subjects’ behavior may be explained
well from the point of view of Bayesian information
maximization.

Introduction

In scientific inquiry and in everyday life, people seek
out information relevant to perceptual and cognitive
tasks. Whether performing experiments to uncover
causal relationships, saccading to informative areas of
visual scenes, or turning towards a surprising sound,
people actively seek out information relative to their
goals.

Consider a person learning a foreign language, who
notices a particular word, “tikos,” used to refer to a
baby moose, a baby penguin, and a baby cheetah.
Based on those examples, she may attempt to discover
what tikos really means. Logically, there are an infinite
number of possibilities. For instance, tikos could mean
baby animals, or simply animals, or even baby animals
and antique telephones. Yet a few examples are often
enough for human learners to form strong intuitions
about what meanings are most likely.

Suppose the learner could point to a baby duck, an
adult duck, or an antique telephone, to inquire whether
that object is “tikos.” What question would she ask?
Why do we think that pointing to the telephone is not a
good idea, even though from a logical point of view, a
phone could very well be tikos? In this paper we
present a normative theoretical framework, to try to
predict the questions people ask in concept learning

tasks (Fedorov, 1972; MacKay, 1992; Oaksford &
Chater, 1994).

A Bayesian concept learning model

In the approach presented here, we evaluate questions
in terms of their information value.  Formally,
information is defined with respect to a probability
model. Here we use a Bayesian framework in the sense
that we model internal beliefs as probability
distributions. In order to quantify the information value
(in bits) of a person’s questions, we first need a model
of her beliefs, and the way those beliefs are updated as
new information is obtained. Tenenbaum (1999, 2000)
provides such a model of people’s beliefs, for a number
concept learning task. While Tenenbaum (1999, 2000);
and the first and last authors of the present paper, in a
pilot study, found that his model described subjects’
beliefs well, there were some deviations between model
predictions and subjects’ beliefs. The concept learning
model used in the present study, which we describe
below, is based on Tenenbaum’s original model, but
extended in ways that reduce previously observed

deviations between model predictions and study
participants’ beliefs.
We formalize the concept learning situation

described by the number concept model using standard
probabilistic notation: random variables are represented
with capital letters, and specific values taken by those
variables are represented with small letters. The random
variable C represents the correct hidden concept on a
given trial. This concept is not directly observable by
study participants; rather, they infer it on the basis of
example numbers that are consistent with the true
concept. Notation of the form “C=c” is shorthand for
the event that the random variable C takes the specific
value c, e.g. that the correct concept (or “hypothesis™) is
prime numbers. We represent the examples given to
the subjects by the random vector X. The subject’s
beliefs about which concepts are probable prior to the
presentation of any examples is represented by the
probability function P(C=c). The subject’s updated
belief about a concept’s probability, after she sees the



examples X=x, is represented by P(C=c|X=x). For
example, if ¢ is the concept even numbers and x the
numbers “2, 6, 47, then P(C=c|X=x) represents the
subject’s posterior probability that the correct concept
is even numbers, given that 2, 6, and 4 are positive
examples of that concept. Study participants are not
explicitly given the true hidden concept; rather, they
infer it from examples of numbers that are consistent
with the true concept.

The number concept model includes both arithmetic
and interval concepts. Interval concepts are sets of
consecutive integers between n and m, where
1<n<100, and n<m<100, such as numbers
between 5 and 8, and numbers between 10 and 35.
Thus, there are 5050 interval concepts. Arithmetic
concepts include odd numbers, even numbers, square
numbers, cube numbers, prime numbers, multiples of n
(3<n<12), powers of n (2<n<10), and numbers
ending in n (1<n<9). There are 33 arithmetic
concepts.

Inferences are made with respect to the following
model of how examples are generated: A concept is
first chosen at random according to a prior probability
distribution. The prior probability distribution of the
model is designed to reflect the human intuition that a
concept like multiples of 10 is more plausible than a
concept like multiples of 10 except 30. A portion of
total prior probability is divided evenly into the
arithmetic concepts, with the exception of even
numbers and odd numbers. To reflect the higher
salience of the concepts even numbers and odd
numbers, each of those concepts is given five times the
prior probability of the other arithmetic concepts.
Among the interval concepts, prior probability is
apportioned according to the Erlang distribution

according to the concept’s size |#|. (The concept
numbers between 15 and 30 is size 16.) Sigma gives
the optimal interval length. In the simulations
described in this paper we set O to 15, although in
principle, O is a free parameter to fit to the data.
Interval concepts of a given length, such as numbers
between 25 and 35, and numbers between 89 and 99,
receive the same prior probability, irrespective of their
endpoints.

Once a concept is chosen, examples are randomly
and independently generated, with equal probability,
from the set of numbers in that concept. Thus, the
likelihood of a particular vector of m examples X=x,
given the concept h,

P(X=x|H=h)=Lm,
i
if all m examples are in the concept 4, and zero
otherwise.

This generating assumption reflects the human
intuition that although a given set of example numbers
is typically compatible with more than one concept, it
may be more representative of some concepts than
others. For instance, although the example numbers 60,
80, 10, and 30 are compatible with both multiples of 10
and multiples of 5, that set of numbers is a better
example of the concept multiples of 10 than it is of the
concept multiples of 5, because it is much more likely
to be observed as a random sample from the more
specific hypothesis multiples of 10.

The generative model described above can be used to
compute the probability that a new element y belongs to
the hidden concept C given the examples in x:

P(yeClX=x)=

SP(X =x|H=h)P(H =h)
h:yeh

SP(X =x|H=hP(H=h)
h

An ideal concept learning model would assign some
prior probability to every possible concept, according to
each concept’s plausibility to human learners. The
main difference between the concept learning model
used in the current paper, and the model introduced in
Tenenbaum (1999, 2000), is our inclusion of a large
number of random “exception” concepts, which are
formed by replicating and slightly changing, or
“mutating,” concepts from the basic model. Here, we
include 50,830 exception hypotheses -- on average, 10
exception concepts for each concept in the basic model.
To form an exception concept (or ‘“hypothesis”), a
concept is first picked from the basic model, according
to the prior probability of concepts in the basic model.
We include a parameter 4 for the average number of
changes to the original concept, and divide these
changes equally, on average, into additions of new
numbers and exclusions of existing numbers. The
probability of each existing number being excluded

M
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currently excluded number (between 1 and 100) being

from a concept is , and the probability of each

added to the concept is ———— .
2(100 - [#)

Each exception hypothesis receives a constant share
of the total proportion of prior probability assigned to
the exception hypotheses. In the simulation of the
model reported in this paper, 60% of prior probability



was assigned to the exception hypotheses, and ¢ was

set to 6. It takes approximately 30 minutes to simulate
the set of trials in the study, for any setting of model
parameters, and we are just beginning to explore the
parameter space. Early exploration suggests that a wide
range of parameters in the extended number concept
model can improve on the basic model’s
correspondence to human beliefs.

Information-maximizing sampling

In the experiment reported in this paper, we allowed
subjects to actively ask questions about number
concepts, instead of making inferences solely on the
basis of the examples given to them. For example, on
one trial the subject was given the number 16 as an
example of the hidden underlying concept, and then
was allowed to test another number, to find out whether
it was also consistent with the true, hidden concept.

In our formalism, the binary random variable Y,
represents whether the number » is a member of the
correct concept. For example, Yy=1 represents the event
that 8 is an element of the correct, hidden concept, and
Ys=0 the event that 8 is not in that concept. Asking “is
the number # an element of the concept?” is equivalent
to finding the value taken by the random variable Y, in
our formalism.

We evaluate how good a question is in terms of the
information about the correct concept expected for that
question, given the example vector X=x. The expected
information gain for the question “Is the number » an
element of the concept?” is calculated with respect to
the learner’s beliefs, as approximated with the extended
number concept model described above. Formally,
expected information gain is given by the following
formula:

I(C.Y, | X=x)=H(C|X=x)-H(C|Y,.X =x),

where the uncertainty (entropy) about the hidden
concept C given the example numbers in x,

H(C|X =x)=
-YP(C=c|X =x)logy, P(C=c|X =x),

and the expected remaining uncertainty about the
hidden concept C, given the example numbers in x and
the answer to the question Y,

1

H({C|Y,,X=x)=- ZOP(Yn =v|X =Xx)
V=

YXP(C=clY,=v,X=x)log, P(C=c|Y, =v,X =x)
C

We consider only binary questions, of the form “is »
consistent with the concept?” so the maximum
information value of any question in our experiment is
one bit. Note how information value of questions is
relative to subjects’ internal beliefs, which we

approximate here by using the expanded number
concept learning model. An information-maximizing
strategy prescribes asking the question with the highest
expected information gain, e.g., the question that
minimizes the expected entropy, over all concepts.

Another strategy of interest is confirmatory sampling,
which consists of asking questions whose answers are
most likely to confirm current beliefs. In other domains
it has been proposed that people have a bias to use
confirmatory strategies, regardless of their information
value (Klayman & Ha, 1987; Popper, 1959; Wason,
1960).

The active sampling concept game

Twenty-nine undergraduate students, recruited from
Cognitive Science Department classes at the University
of California, San Diego, participated in the
experiment. Subjects gave informed consent, and
received either partial course credit for required study
participation, or extra course credit, for their
participation. The experiment began with the following
instructions:

Often it is possible to have a good idea about the state
of the world, without completely knowing it. People
often learn from examples, and this study explores how
people do so. In this experiment, you will be given
examples of a hidden number rule. These examples will
be randomly chosen from the numbers between 1 and
100 that follow the rule. The true rule will remain
hidden, however. Then you will be able to test an
additional number, to see if it follows that same hidden
rule. Finally, you will be asked to give your best
estimation of what the true hidden rule is, and the
chances that you are right. For instance, if the true
hidden rule were “multiples of 11,” you might see the
examples 22 and 66. If you thought the rule were
“multiples of 11,” but also possibly “even numbers,” you
could test a number of your choice, between 1-100, to
see if it also follows the rule.

On each trial subjects first saw a set of examples
from the correct concept. For instance, if the concept
were even numbers, subjects might see the numbers “2,
6, 47 as examples. Subjects were then given the
opportunity to test a number of their choice. Subjects
were given feedback on whether the number they tested
was an element of the correct concept.

We wrote a computer program to simulate the
expanded number concept model, and to compute the
information value of each possible question, given each
set of examples. By considering beliefs and questions
together, we may evaluate the information value of
participants’ questions, as well as that of information-
maximizing and confirmatory sampling strategies. We
define the confirmatory strategy as testing the number
(excluding the examples) that has the highest posterior
probability, as given by the extended number concept



model, of being consistent with the correct hidden
concept.

Results

We discuss two types of trials, grouped according to
the posterior beliefs of the extended number concept
model, after all the example numbers have been seen.
These results should be considered preliminary, as 29
data points on each trial are not sufficient for estimation
of statistically reliable sampling distributions over the
range of possible queries from 1 to 100.

Arithmetic trials

On some trials, the model is dominated by arithmetic
concepts, and exception hypotheses based on arithmetic
concepts. On each of these trials, good agreement
between a number’s information value and subjects’
propensity to sample that number was observed. The
information value of the confirmatory strategy was near
to that of the information-maximizing strategy on these
trials.

Consider the trial with the examples 81, 25, 4, and
36, in which the concept with the highest posterior
probability is square numbers. Generalization behavior
of the model, and beliefs of subjects, are shown in
Figure 1. Note that the model and subjects alike assign
certain, or near certain, probability to each of the
example numbers, but less than certain probability to
the other square numbers. Relative to the model’s
beliefs, the most informative numbers to test are non-
example square numbers, such as 9, 16, 49, 64, or 100
(Figure 2). In fact, 20 of 29 subjects tested one of these
numbers. Other subjects’ samples do not show a clear
pattern, except for testing the number 10 (5 of 29
subjects), which is unpredicted.
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Figure 1. Generalization probabilities, given
the examples 81, 25, 4, and 36. Model
probabilities are given by the line. Subjects’
probabilities, for the 30 probe numbers
subjects rated, are given with circles.

Good agreement between subjects’ samples and rated
information value is also observed on the trial with the
examples 16, 8, 2, and 64. The most informative

numbers to test are non-example powers of two, 4 or
32. Most (16/29) subjects tested these numbers.
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Figure 2. Information value of questions
(line), and subjects’ questions (circles),
given the examples 81, 25, 4, and 36.

Finally, we may consider the trial with the examples
60, 80, 10, and 30, in which the hypothesis multiples of
10 receives the highest posterior probability; multiples
of 5 also receive moderate probability (Figure 4). On
this trial, non-example multiples of 10, such as 20, and
odd multiples of five, have the highest information
value.  Multiples of 10 were tested by 21 of 29
subjects; an additional 5 subjects tested odd multiples
of five
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Figure 3. Generalization probabilities given
the examples 60, 80, 10, and 30.

The difference between the first two arithmetic
trials, and the trial with the examples 60, 80, 10, and 30
appears to be that a clear alternate hypothesis --
multiples of five -- receives moderate posterior
probability in the multiples of 10 trial, but not on the
other trials.
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Figure 4. Information value of questions,
and subjects’ questions, given the examples
60, 80, 10, and 30.

Interval trials

On these trials, several examples of numbers of
similar magnitude, such as 16, 23, 19, and 20, are given
(these numbers are points where model probabilities are
1.00, Figure 5, and Figure 7). The model is certain that
the example numbers themselves are consistent with the
true concept. The model is fairly sure that non-example
numbers within the range spanned by the examples, like
17, 18, 21, and 22, are consistent with the true concept.
Finally, the model assigns decreasing probability to
numbers as they move away from the range of observed
examples (Figure 5).

It should be noted that there is some variability from
one run of the model to the next. The general pattern of
results, however, holds from run to run. In particular,
(1) numbers slightly outside of the range of the
observed examples are most informative, (2)
information value of numbers decreases with increasing
distance from the observed examples, and (3) there is
moderate information value in non-example numbers
within the range of observed examples.

Most subjects tested numbers outside of, but near the
observed examples (Figure 6). About one-third of
subjects tested (non-example) numbers within the
range spanned by the examples. On the other interval
trials -- with example numbers 60, 51, 57, and 55; and
81, 98, 96, 93 (illustrated in Figure 7 and Figure 8)--
similar patterns emerged.
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Figure 5. Generalization probabilities, given
the examples 16, 23, 19, and 20.
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Figure 6. Information value of questions,
and subjects’ questions, given the examples
16,23, 19, and 20.
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Figure 7. Generalization probabilities, given
the examples 81, 98, 96, and 93.
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Figure 8. Information value of questions,
and subjects’ questions, given the examples
81, 98, 96, and 93.

Discussion

This paper presents work in progress to analyze
active inference in concept learning from the point of
view of the rational, probabilistic approach to cognition
(Anderson, 1990). In the rational study of information-
gathering behavior, the current research adds to existing
analyses of Wason’s (1966, 1968) selection task
(Oaksford & Chater, 1994, 1998), and Wason’s (1960)
2-4-6 task (Ginzburg & Sejnowski, 1996).

We found that a normatively inspired criterion of
optimal sampling -- maximizing average information
gain -- predicts human behavior well on a relatively
unconstrained task. This result is strengthened by the
fact that the extended number concept model we
employed, as a proxy for subjects beliefs, was not
originally developed with the goal of serving as a
model for sampling. Nor were our extensions to it ad
hoc. To the contrary, our extended model now has a
better fit to data from earlier studies.

If rational theories of cognition are to explain thought
and behavior in natural environments, then optimal
sampling agents should also exhibit the systematic
“biases” traditionally associated with human behavior.
Indeed, we found that on many trials, a confirmatory
sampling strategy approximates the information-
maximizing strategy.

A final point is that whereas information gain,
calculated with respect to the extended number concept
model, predicts study participants’ questions fairly well,
information gain with respect to the original number
concept model does not do so. This illustrates that
particular queries are not informative or uninformative
on their own, but only in relation to a particular
probability model. To understand people’s questions,
or build artificial sampling systems that come closer to
meeting human competence, developing appropriate
probability models is critical.
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