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Abstract 

People are active experimenters, constantly seeking new 

information relevant to their goals.  A reasonable 

approach to active information gathering is to ask 

questions and conduct experiments that minimize the 

expected state of uncertainty, or maximize the expected 

information gain, given current beliefs (Fedorov, 1972; 

MacKay, 1992; Oaksford & Chater, 1994).  In this paper 

we present results on an exploratory experiment 

designed to study people’s active information gathering 

behavior on a concept learning task.  The results of the 

experiment suggest subjects’ behavior may be explained 

well from the point of view of Bayesian information 

maximization. 

Introduction 

In scientific inquiry and in everyday life, people seek 

out information relevant to perceptual and cognitive 

tasks.  Whether performing experiments to uncover 

causal relationships, saccading to informative areas of 

visual scenes, or turning towards a surprising sound, 

people actively seek out information relative to their 

goals. 

Consider a person learning a foreign language, who 

notices a particular word, “tikos,” used to refer to a 

baby moose, a baby penguin, and a baby cheetah.  

Based on those examples, she may attempt to discover 

what tikos really means.  Logically, there are an infinite 

number of possibilities.  For instance, tikos could mean 

baby animals, or simply animals, or even baby animals 
and antique telephones.  Yet a few examples are often 

enough for human learners to form strong intuitions 

about what meanings are most likely. 

Suppose the learner could point to a baby duck, an 

adult duck, or an antique telephone, to inquire whether 

that object is “tikos.”  What question would she ask?  

Why do we think that pointing to the telephone is not a 

good idea, even though from a logical point of view, a 

phone could very well be tikos?  In this paper we 

present a normative theoretical framework, to try to 

predict the questions people ask in concept learning 

tasks (Fedorov, 1972; MacKay, 1992; Oaksford & 

Chater, 1994).  

A Bayesian concept learning model 

In the approach presented here, we evaluate questions 

in terms of their information value.  Formally, 

information is defined with respect to a probability 

model.  Here we use a Bayesian framework in the sense 

that we model internal beliefs as probability 

distributions.  In order to quantify the information value 

(in bits) of a person’s questions, we first need a model 

of her beliefs, and the way those beliefs are updated as 

new information is obtained.  Tenenbaum (1999, 2000) 

provides such a model of people’s beliefs, for a number 

concept learning task.  While Tenenbaum (1999, 2000); 

and the first and last authors of the present paper, in a 

pilot study, found that his model described subjects’ 

beliefs well, there were some deviations between model 

predictions and subjects’ beliefs.  The concept learning 

model used in the present study, which we describe 

below, is based on Tenenbaum’s original model, but 

extended in ways that reduce previously observed 

deviations between model predictions and study 

participants’ beliefs. 

We formalize the concept learning situation 

described by the number concept model using standard 

probabilistic notation: random variables are represented 

with capital letters, and specific values taken by those 

variables are represented with small letters. The random 

variable C represents the correct hidden concept on a 

given trial. This concept is not directly observable by 

study participants; rather, they infer it on the basis of 

example numbers that are consistent with the true 

concept. Notation of the form “C=c” is shorthand for 

the event that the random variable C takes the specific 

value c, e.g. that the correct concept (or “hypothesis”) is 

prime numbers.  We represent the examples given to 

the subjects by the random vector X.  The subject’s 

beliefs about which concepts are probable prior to the 

presentation of any examples is represented by the 

probability function P(C=c).  The subject’s updated 

belief about a concept’s probability, after she sees the 



examples X=x, is represented by P(C=c|X=x). For 

example, if c is the concept even numbers and x the 

numbers “2, 6, 4”, then P(C=c|X=x) represents the 

subject’s posterior probability that the correct concept 

is even numbers, given that 2, 6, and 4 are positive 

examples of that concept.  Study participants are not 

explicitly given the true hidden concept; rather, they 

infer it from examples of numbers that are consistent 

with the true concept. 

The number concept model includes both arithmetic
and interval concepts.  Interval concepts are sets of 

consecutive integers between n and m, where 

1001 ≤≤ n , and 100≤≤ mn , such as numbers 

between 5 and 8, and numbers between 10 and 35.

Thus, there are 5050 interval concepts.  Arithmetic 

concepts include odd numbers, even numbers, square 

numbers, cube numbers, prime numbers, multiples of n

( 123 ≤≤ n ), powers of n ( 102 ≤≤ n ), and numbers 

ending in n ( 91 ≤≤ n ).  There are 33 arithmetic 

concepts. 

Inferences are made with respect to the following 

model of how examples are generated: A concept is 

first chosen at random according to a prior probability 

distribution.  The prior probability distribution of the 

model is designed to reflect the human intuition that a 

concept like multiples of 10 is more plausible than a 

concept like multiples of 10 except 30.  A portion of 

total prior probability is divided evenly into the 

arithmetic concepts, with the exception of even

numbers and odd numbers.  To reflect the higher 

salience of the concepts even numbers and odd

numbers, each of those concepts is given five times the 

prior probability of the other arithmetic concepts.  

Among the interval concepts, prior probability is 

apportioned according to the Erlang distribution  
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according to the concept’s size |h|.  (The concept 

numbers between 15 and 30 is size 16.)   Sigma gives 

the optimal interval length.  In the simulations 

described in this paper we set σ  to 15, although in 

principle, σ  is a free parameter to fit to the data.  

Interval concepts of a given length, such as numbers 
between 25 and 35, and numbers between 89 and 99,

receive the same prior probability, irrespective of their 

endpoints. 

Once a concept is chosen, examples are randomly 

and independently generated, with equal probability, 

from the set of numbers in that concept.  Thus, the 

likelihood of a particular vector of m examples X=x, 

given the concept h,  
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if all m examples are in the concept h, and zero 

otherwise.  

This generating assumption reflects the human 

intuition that although a given set of example numbers 

is typically compatible with more than one concept, it 

may be more representative of some concepts than 

others.  For instance, although the example numbers 60, 

80, 10, and 30 are compatible with both multiples of 10
and multiples of 5, that set of numbers is a better 

example of the concept multiples of 10 than it is of the 

concept multiples of 5, because it is much more likely 

to be observed as a random sample from the more 

specific hypothesis multiples of 10.

The generative model described above can be used to 

compute the probability that a new element y belongs to 

the hidden concept C given the examples in x:
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An ideal concept learning model would assign some 

prior probability to every possible concept, according to 

each concept’s plausibility to human learners.  The 

main difference between the concept learning model 

used in the current paper, and the model introduced in 

Tenenbaum (1999, 2000), is our inclusion of a large 

number of random “exception” concepts, which are 

formed by replicating and slightly changing, or 

“mutating,” concepts from the basic model.  Here, we 

include 50,830 exception hypotheses -- on average, 10 

exception concepts for each concept in the basic model.  

To form an exception concept (or “hypothesis”), a 

concept is first picked from the basic model, according 

to the prior probability of concepts in the basic model.  

We include a parameter µ  for the average number of 

changes to the original concept, and divide these 

changes equally, on average, into additions of new 

numbers and exclusions of existing numbers.  The 

probability of each existing number being excluded 

from a concept is 
h2

µ
, and the probability of each 

currently excluded number (between 1 and 100) being 

added to the concept is ( )h−1002

µ
.

Each exception hypothesis receives a constant share 

of the total proportion of prior probability assigned to 
the exception hypotheses.  In the simulation of the 

model reported in this paper, 60% of prior probability 



was assigned to the exception hypotheses, and µ was 

set to 6.  It takes approximately 30 minutes to simulate 

the set of trials in the study, for any setting of model 

parameters, and we are just beginning to explore the 

parameter space.  Early exploration suggests that a wide 
range of parameters in the extended number concept 

model can improve on the basic model’s 

correspondence to human beliefs. 

Information-maximizing sampling 

 In the experiment reported in this paper, we allowed 

subjects to actively ask questions about number 

concepts, instead of making inferences solely on the 

basis of the examples given to them.  For example, on 
one trial the subject was given the number 16 as an 

example of the hidden underlying concept, and then 

was allowed to test another number, to find out whether 

it was also consistent with the true, hidden concept. 
In our formalism, the binary random variable Yn

represents whether the number n is a member of the 

correct concept. For example, Y8=1 represents the event 

that 8 is an element of the correct, hidden concept, and 
Y8=0 the event that 8 is not in that concept.  Asking “is 

the number n an element of the concept?” is equivalent 

to finding the value taken by the random variable Yn, in 

our formalism. 
We evaluate how good a question is in terms of the 

information about the correct concept expected for that 

question, given the example vector X=x.  The expected 

information gain for the question “Is the number n an 
element of the concept?” is calculated with respect to 

the learner’s beliefs, as approximated with the extended 

number concept model described above.  Formally, 

expected information gain is given by the following 
formula: 
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where the uncertainty (entropy) about the hidden 

concept C given the example numbers in x,
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and the expected remaining uncertainty about the 

hidden concept C, given the example numbers in x and 

the answer to the question Yn:
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We consider only binary questions, of the form “is n

consistent with the concept?” so the maximum 

information value of any question in our experiment is 

one bit.  Note how information value of questions is 
relative to subjects’ internal beliefs, which we 

approximate here by using the expanded number 

concept learning model. An information-maximizing 
strategy prescribes asking the question with the highest 

expected information gain, e.g., the question that 

minimizes the expected entropy, over all concepts.   

Another strategy of interest is confirmatory sampling, 
which consists of asking questions whose answers are 

most likely to confirm current beliefs. In other domains 

it has been proposed that people have a bias to use  

confirmatory strategies, regardless of their information 
value (Klayman & Ha, 1987; Popper, 1959; Wason, 

1960).

The active sampling concept game 

Twenty-nine undergraduate students, recruited from 

Cognitive Science Department classes at the University 

of California, San Diego, participated in the 
experiment.   Subjects gave informed consent, and 

received either partial course credit for required study 

participation, or extra course credit, for their 

participation.  The experiment began with the following 
instructions: 

Often it is possible to have a good idea about the state 

of the world, without completely knowing it. People 

often learn from examples, and this study explores how 

people do so. In this experiment, you will be given 

examples of a hidden number rule. These examples will 

be randomly chosen from the numbers between 1 and 

100 that follow the rule. The true rule will remain 

hidden, however. Then you will be able to test an 

additional number, to see if it follows that same hidden 

rule. Finally, you will be asked to give your best 

estimation of what the true hidden rule is, and the 

chances that you are right. For instance, if the true 

hidden rule were “multiples of 11,” you might see the 

examples 22 and 66. If you thought the rule were 

“multiples of 11,” but also possibly “even numbers,” you 

could test a number of your choice, between 1-100, to 

see if it also follows the rule. 

On each trial subjects first saw a set of examples 

from the correct concept. For instance, if the concept 

were even numbers, subjects might see the numbers “2, 
6, 4” as examples.  Subjects were then given the 

opportunity to test a number of their choice.  Subjects 

were given feedback on whether the number they tested 

was an element of the correct concept.   
We wrote a computer program to simulate the 

expanded number concept model, and to compute the 

information value of each possible question, given each 

set of examples.  By considering beliefs and questions 
together, we may evaluate the information value of 

participants’ questions, as well as that of information-

maximizing and confirmatory sampling strategies.  We 

define the confirmatory strategy as testing the number 
(excluding the examples) that has the highest posterior 

probability, as given by the extended number concept 



model, of being consistent with the correct hidden 

concept.  

Results

We discuss two types of trials, grouped according to 
the posterior beliefs of the extended number concept 

model, after all the example numbers have been seen.  

These results should be considered preliminary, as 29 

data points on each trial are not sufficient for estimation 
of statistically reliable sampling distributions over the 

range of possible queries from 1 to 100. 

Arithmetic trials 

On some trials, the model is dominated by arithmetic 
concepts, and exception hypotheses based on arithmetic 

concepts.  On each of these trials, good agreement 

between a number’s information value and subjects’ 

propensity to sample that number was observed.  The 
information value of the confirmatory strategy was near 

to that of the information-maximizing strategy on these 

trials.

Consider the trial with the examples 81, 25, 4, and 
36, in which the concept with the highest posterior 

probability is square numbers.  Generalization behavior 

of the model, and beliefs of subjects, are shown in 

Figure 1.  Note that the model and subjects alike assign 
certain, or near certain, probability to each of the 

example numbers, but less than certain probability to 

the other square numbers.  Relative to the model’s 

beliefs, the most informative numbers to test are non-
example square numbers, such as 9, 16, 49, 64, or 100 

(Figure 2).  In fact, 20 of 29 subjects tested one of these 

numbers. Other subjects’ samples do not show a clear 

pattern, except for testing the number 10 (5 of 29 
subjects), which is unpredicted. 
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Figure 1.  Generalization probabilities, given 

the examples 81, 25, 4, and 36.  Model 
probabilities are given by the line.  Subjects’ 

probabilities, for the 30 probe numbers 

subjects rated, are given with circles. 

Good agreement between subjects’ samples and rated 
information value is also observed on the trial with the 

examples 16, 8, 2, and 64.  The most informative 

numbers to test are non-example powers of two, 4 or 

32.  Most (16/29) subjects tested these numbers. 
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Figure 2.  Information value of questions 

(line), and subjects’ questions (circles), 
given the examples 81, 25, 4, and 36.  

 Finally, we may consider the trial with the examples 

60, 80, 10, and 30, in which the hypothesis multiples of 

10 receives the highest posterior probability; multiples 
of 5 also receive moderate probability (Figure 4).  On 

this trial,  non-example multiples of 10, such as 20, and 

odd multiples of five, have  the highest information 

value.   Multiples of 10  were tested by 21 of 29 
subjects; an additional 5 subjects tested odd multiples 

of five  
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Figure 3.  Generalization probabilities given 

the examples 60, 80, 10, and 30. 

 The difference between the  first two  arithmetic 

trials, and the trial with the examples 60, 80, 10, and 30 

appears to be that a clear alternate hypothesis -- 

multiples of five -- receives moderate posterior 
probability in the multiples of 10 trial, but not on the 

other trials.  
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Figure 4.  Information value of questions, 
and subjects’ questions, given the examples 

60, 80, 10, and 30. 

Interval trials 

On these trials, several examples of numbers of 

similar magnitude, such as 16, 23, 19, and 20, are given 

(these numbers are points where model probabilities are 

1.00, Figure 5, and Figure 7).  The model is certain that 
the example numbers themselves are consistent with the 

true concept.  The model is fairly sure that non-example 

numbers within the range spanned by the examples, like 

17, 18, 21, and 22, are consistent with the true concept.  
Finally, the model assigns decreasing probability to 

numbers as they move away from the range of observed 

examples (Figure 5). 

It should be noted that there is some variability from 
one run of the model to the next.  The general pattern of 

results, however, holds from run to run.  In particular, 

(1) numbers slightly outside of the range of the 

observed examples are most informative, (2) 
information value of numbers decreases with increasing 

distance from the observed examples, and (3) there is 

moderate information value in non-example numbers 

within the range of observed examples. 
Most subjects tested numbers outside of, but near the 

observed examples (Figure 6).  About one-third of 

subjects tested  (non-example) numbers within the 

range spanned by the examples.   On the other interval 
trials -- with example numbers 60, 51, 57, and 55; and 

81, 98, 96, 93 (illustrated in Figure 7 and Figure 8)--  

similar patterns emerged.     
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Figure 5.  Generalization probabilities, given 

the examples 16, 23, 19, and 20. 
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Figure 6.  Information value of questions, 
and subjects’ questions, given the examples 

16, 23, 19, and 20. 
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Figure 7.  Generalization probabilities, given 
the examples 81, 98, 96, and 93. 
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Figure 8.  Information value of questions, 
and subjects’ questions, given the examples 

81, 98, 96, and 93. 

Discussion

This paper presents work in progress to analyze 

active inference in concept learning from the point of 
view of the rational, probabilistic approach to cognition 

(Anderson, 1990).  In the rational study of information-

gathering behavior, the current research adds to existing 

analyses of Wason’s (1966, 1968) selection task 
(Oaksford & Chater, 1994, 1998), and Wason’s (1960) 

2-4-6 task (Ginzburg & Sejnowski, 1996).   

We found that a normatively inspired criterion of 

optimal sampling -- maximizing average information 
gain -- predicts human behavior well on a relatively 

unconstrained task.  This result is strengthened by the 

fact that the extended number concept model we 

employed, as a proxy for subjects beliefs, was not 
originally developed with the goal of serving as a 

model for sampling.  Nor were our extensions to it ad 

hoc.  To the contrary, our extended model now has a 

better fit to data from earlier studies. 
If rational theories of cognition are to explain thought 

and behavior in natural environments, then optimal 

sampling agents should also exhibit the systematic 

“biases” traditionally associated with human behavior.  
Indeed, we found that on many trials, a confirmatory 

sampling strategy approximates the information-

maximizing strategy. 

A final point is that whereas information gain, 
calculated with respect to the extended number concept 

model, predicts study participants’ questions fairly well, 

information gain with respect to the original number 

concept model does not do so.  This illustrates that 
particular queries are not informative or uninformative 

on their own, but only in relation to a particular 

probability model.  To understand people’s questions, 

or build artificial sampling systems that come closer to 
meeting human competence, developing appropriate 

probability models is critical. 
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