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Abstract

An algorithm is developed for generating featural rep-
resentations from similarity data using Tversky’s (1977)
Contrast Model. Unlike previous additive clustering ap-
proaches, the algorithm fits a representational model that
allows for stimulus similarity to be measured in terms of
both common and distinctive features. The important is-
sue of striking an appropriate balance between data fit and
representational complexity is addressed through the use
of the Geometric Complexity Criterion to guide model
selection. The ability of the algorithm to recover known
featural representations from noisy data is tested, and it is
also applied to real data measuring the similarity of kin-
ship terms.

Introduction
Understanding human mental representation is necessary
for understanding human perception, cognition, decision
making, and action. Mental representations play an im-
portant role in mediating adaptive behavior, and form the
basis for the cognitive processes of generalization, infer-
ence and learning. Different assumptions regarding the
nature and form of mental representation lead to different
constraints on formal models of these processes. For this
reason, Pinker (1998) argues that “pinning down men-
tal representation is the route to rigor in psychology” (p.
85). Certainly, it is important that cognitive models use
principled mental representations, since the ad hoc defi-
nition of stimuli on the basis of intuitive reasonableness
is a highly questionable practice (Brooks 1991, Komatsu
1992, Lee 1998).

One appealing and widely used approach for deriving
stimulus representations is to base them on measures of
stimulus similarity. Following Shepard (1987), similarity
may be understood as a measure of the degree to which
the consequences of one stimulus generalize to another,
and so it makes adaptive sense to give more similar stim-
uli mental representations that are themselves more sim-
ilar. For a domain with n stimuli, similarity data take the
form of an n× n similarity matrix, S = si j , where si j
is the similarity of the ith and jth stimuli. The goal of
similarity-based representation is then to define stimulus
representations that, under a given similarity model, cap-
ture the constraints implicit in the similarity matrix by
approximating the data.

Goldstone’s (in press) recent review identifies four
broad model classes for stimulus similarity: geomet-

ric, featural, alignment-based, and transformational. Of
these, the two most widely used approaches are the ge-
ometric, where stimuli are represented in terms of their
values on different dimensions, and the featural, where
stimuli are represented in terms of the presence or ab-
sence of weighted features. The geometric approach
is most often used in formal models of cognitive pro-
cesses, partly because of the ready availability of tech-
niques such as multidimensional scaling (e.g., Kruskal
1964; see Cox & Cox 1994 for an overview), which gen-
erate geometric representations from similarity data. The
featural approach to stimulus representation, however, is
at least as important as the geometric approach, and war-
rants the development of techniques analogous to multi-
dimensional scaling.

Accordingly, this paper describes an algorithm that
generates featural representations from similarity data.
The optimization processes used in the algorithm are
standard ones, and could almost certainly be improved.
In this regard, we draw on Shepard and Arabie’s (1979)
distinction between the psychological model that is be-
ing fit, and the algorithm that does the fitting. We make
no claims regarding the significance of the algorithm it-
self (and certainly do not claim it is a model of the way
humans learn mental representations), but believe that
the psychological representational model that it fits has
three important properties. First, it allows for the arbi-
trary definition of features, avoiding the limitations of
partitioning or hierarchical clustering. Second, it uses a
more general model of featural stimulus similarity than
has previously been considered. Third, it generates feat-
ural representations in a way that balances the competing
demands of data-fit and representational complexity.

Featural Representation
Within a featural representation, stimuli are defined by
the presence or absence of a set of saliency weighted fea-
tures or properties. Formally, if a stimulus domain con-
tains n stimuli and m features, a featural representation is
given by the n×m matrix F = fik , where

fik =
1 if stimulus i has feature k
0 otherwise,

(1)

together with a vector w = (w1, . . . ,wm) giving the (pos-
itive) weights of each of the features.



The Contrast and Ratio Models
Tversky’s (1977) Contrast Model and Ratio Model of
stimulus similarity provide a rich range of possibilities
for generating featural representations that have been sig-
nificantly under-utilized. Using the assumption that the
similarity between two stimuli is a function of their com-
mon and distinctive features, the Contrast Model mea-
sures stimulus similarity as:

ŝi j = θF (fi f j)−αF (fi − f j)−βF (f j − fi) , (2)

where fi f j denotes the features common to the ith and
jth stimuli, fi − f j denotes the features present in the
ith, but not the jth, stimulus, and F ( ) is some mono-
tonically increasing function. By manipulating the posi-
tive weighting hyper-parameters θ, α and β, different de-
grees of importance may given to the common and dis-
tinctive components. In particular, Tversky (1977) em-
phasizes the two extreme alternatives obtained by setting
θ = 1,α = β = 0 (common features only), and θ = 0,α =
β = 1 (distinctive features only). A different approach
is given by the Ratio Model, where similarity takes the
form:

ŝi j =
θF (fi f j)

θF (fi f j) αF (fi − f j) βF (f j − fi)
. (3)

While the Contrast Model and the Ratio Model pro-
vide great flexibility for measuring similarity across fea-
tural representations, the only established techniques for
generating the representations from similarity data are
additive clustering algorithms (e.g., Arabie & Carroll
1980; Lee 1999, in press; Mirkin 1987; Shepard & Ara-
bie 1979; Tenenbaum 1996), which rely exclusively on
the common features version of the Contrast Model. This
means that only one special case of one of these ap-
proaches has been used as the basis of a practical tech-
nique for generating representations.

The paucity of available techniques is serious, given
the recognition (e.g., Goodman 1972; Rips 1989; see
Goldstone 1994 for an overview) that similarity is not
a unitary phenomenon, and the way in which it is mea-
sured may change according to different cognitive de-
mands. Direct empirical evidence that featural similar-
ity judgments can place varying emphasis on common
and distinctive features is provided by the finding that
items presented in written form elicit common feature-
weighted judgments, whereas pictures tend to be rated
more in terms of distinctive features (Gati & Tversky
1984; Tversky & Gati 1978).

A Symmetric Contrast Model
Although the Contrast Model has three hyper-
parameters, α and β remain distinct only when
si j = s ji. While it is certainly the case that real world
domains display asymmetric similarity, modeling tech-
niques based on similarity data generally assume that
similarity is symmetric. Further, if the similarity ratings
are assumed to lie between 0 and 1, the remaining

hyper-parameters α and θ can be incorporated into one
parameter, ρ = θ (θ α), which represents the relative
weighting of common and distinctive features, with
0 ρ 1. Setting the functional form F ( ) using the
same ‘sum of saliency weights’ approach as additive
clustering yields the similarity model

ŝi j = ρ∑
k

wk fik f jk − 1−ρ
2 ∑

k

wk fik
(
1− f jk

)

∑
k

wk (1− fik) f jk c. (4)

It is this symmetric version of the Contrast Model that
is used in this paper to develop general featural repre-
sentations. It allows for any relative degree of empha-
sis to be placed on common and distinctive features and,
in particular, subsumes the additive clustering model
(ρ = 1) and the distance-based feature-matching similar-
ity model (ρ = 0). Technically, it is worth noting that the
additive constant c used in additive clustering, which is
added to all pairwise similarity estimates in both addi-
tive clustering and Contrast Model clustering representa-
tions, is not treated as a cluster, and thus is not weighted
by ρ.

Limiting Representational Complexity
Shepard and Arabie (1979) have noted that the ability to
specify large numbers of features and set their weights
allows any similarity matrix to be modeled perfectly by
a featural representation using the common features ver-
sion of the Contrast Model. The same is true for the ma-
jority of Tversky’s (1977) similarity models, and is cer-
tainly true for Eq. (4). While the representational power
to model data is desirable, the introduction of uncon-
strained feature structures with free parameters detracts
from fundamental modeling goals, such as the achieve-
ment of interpretability, explanatory insight, and the abil-
ity to generalize accurately beyond given information
(Lee 2001a).

This means that techniques for generating featural rep-
resentations from similarity data must balance the com-
peting demands of maximizing accuracy and minimizing
complexity, following the basic principle of model selec-
tion known as ‘Ockham’s Razor’ (Myung & Pitt 1997).
Data precision must also be considered, since precise
data warrants a representation being made more detailed
to improve data-fit, while noisy data does not.

In practice, this means that featural representations
should not be derived solely on the basis of how well
they fit the data, as quantified by a measure such as the
variance accounted for,

VAF = 1− ∑i< j(si j − ŝi j)2

∑i< j(si j − s̄)2 , (5)

where s̄ is the arithmetic mean of the similarity data.
Rather, some form of complexity control must be used



to balance data-fit with model complexity. Most es-
tablished algorithms strike this balance in unsatisfactory
ways, either pre-determining a fixed number of clusters
(e.g., Shepard & Arabie 1979; Tenenbaum 1996), or pre-
determining a fixed level of representational accuracy
(e.g., Lee 1999).

Recently, Lee (in press) has applied the Bayesian In-
formation Criterion (BIC: Schwarz 1978) to limit the
complexity of additive clustering representations. Un-
fortunately, an important limitation of the BIC is that it
equates model complexity with the number of parame-
ters in the model. While this is often a reasonable ap-
proximation, it neglects what Myung and Pitt (1997)
term the ‘functional form’ component of model com-
plexity. For featural representations, parametric com-
plexity is simply the number of features used in a rep-
resentation. Functional form complexity, however, con-
siders the feature structure F, and is sensitive to the pat-
terns with which stimuli share features (see Lee 2001a),
as well as any difference arising from the relative empha-
sis given to common and distinctive features.

It is important to account for functional form complex-
ity with featural representational models that can vary
their emphasis on common and distinctive features. Fig-
ure 1 shows the results of fitting featural representations,
assuming different levels of ρ, on similarity data that
were generated using either entirely common features
(ρ = 1), entirely distinctive features (ρ = 0), or an even
balance of the two (ρ = 0.5). These results are averaged
across five different similarity matrices, each based on a
five-feature representation, and show one standard error
about the mean level of fit.
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Figure 1: The change in VAF value, as a function of the
assumed balance between common and distinctive fea-
tures, for the entirely common (dotted line), entirely dis-
tinctive (dashed line) and balanced (solid line) similarity
data.

As expected, the best-fitting featural representations
have ρ values matching those that generated the data.

More interestingly, Figure 1 shows that the level of
fit for the entirely common features data deteriorates
more rapidly than for the entirely distinctive features
data when the wrong ρ value is assumed. Similarly,
for the evenly balanced data, the fit is greater when
too much emphasis is placed on common features in
the assumed similarity model. These results imply that
common features-weighted models are more able to fit
data when they are wrong than are distinctive features-
weighted models. In the language of model complex-
ity, the common features functional form is more flexible
than the distinctive features functional form, and this ex-
tra complexity improves the fit of incorrect models. For
this reason, it is important to derive featural representa-
tions using a measure that is sensitive to functional form
complexity.

A Geometric Complexity Criterion
Myung, Balasubramanian, and Pitt (2000) have recently
developed a measure called the Geometric Complexity
Criterion (GCC) that constitutes the state-of-the-art in
accounting for both fit and complexity in model selec-
tion. The basic idea is to define complexity in terms
of the number of distinguishable data distributions that
the model can accommodate through parametric varia-
tion, with more complicated models being able to index
more distributions than simple ones. Using Tenenbaum’s
(1996) probabilistic formulation of the data-fit of a featu-
ral model, and extending Lee’s (2001a) derivation of the
Fisher Information matrix for the common features case
of the Contrast Model, it is a reasonably straightforward
exercise to derive a GCC for the current similarity model.
The final result is:

GCC =
1

2s2 ∑
i< j

(si j − ŝi j)2 m 1
2

ln
n(n−1)

4πs2

1
2

lndetG, (6)

where s denotes an estimate of the inherent precision of
the data (see Lee 2001b), m is the number of features, n
is the number of stimuli, and G denotes the m×m com-
plexity matrix for the feature structure. The xy-th cell of
the complexity matrix is given by,

∑
i< j

ei jxei jy (7)

where ei jx equals ρ if x is a common feature, −(1−ρ) 2
if x is a distinctive feature, and 0 if neither i nor j pos-
sesses the feature x.

An interesting aspect of the complexity matrix, and the
GCC measure as a whole, is that it is independent of the
parameterization of the model. That is, the complexity of
a featural representation is dependent only on the feature
structure, and not the saliencies assigned to the features.
We should make two technical points about the GCC.
First, this derivation is based on the assumption that ρ
is a fixed property of a model, and not a free parameter.



An alternative would be to modify the GCC so that it ac-
commodated ρ as a model parameter. Second, since the
additive constant is not weighted by ρ, the terms in the
complexity matrix corresponding to the additive constant
behave as if ρ = 1.

Algorithm
In developing an algorithm to fit featural representa-
tions using the Contrast Model, we were guided by the
successful additive clustering algorithm reported by Lee
(submitted). Basically, the algorithm works by ‘grow-
ing’ a featural representation, starting with a one-feature
model, and continually adding features while this leads
to improvements in the GCC measure. For any fixed
number of features, the search for an appropriate as-
signment of stimuli to features is done using stochastic
hill-climbing, with the best-fitting weights being deter-
mined using a standard non-negative least squares algo-
rithm (Lawson & Hanson 1974). The algorithm termi-
nates once the process of adding features leads to rep-
resentations with GCC values that are more than a pre-
specified constant above the best previously found, and
the featural representation with the minimum GCC value
is returned.

Figure 2: The artificial featural representation containing
seven stimuli and four features.

To test the ability of this optimization algorithm to
fit similarity data, we examined its ability to recover a
known featural representation. This representation had
seven stimuli and four features, and included partition-
ing, nested, and overlapping clusters, as shown in Figure
2. Using this representation, similarity data were gen-
erated assuming entirely common features, entirely dis-
tinctive features, or an even balance between the two.
Feature weights were chosen at random subject to the
constraint that they resulted in positive similarity values.
Each of the similarity values was perturbed by adding
noise that was independently drawn from a Normal dis-
tribution with mean 0 and standard deviation 0.05.
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Figure 3: The change in GCC value, as a function of the
assumed balance between common and distinctive fea-
tures, for the entirely common (dotted line), entirely dis-
tinctive (dashed line) and balanced (solid line) similarity
data.

The algorithm was applied to this similarity data un-
der different assumptions regarding the balance between
common and distinctive features, using ρ values of 0,
0.25, 0.5, 0.75 and 1. In calculating the GCC measure, a
data precision value of σ = 0.05 was assumed, in accor-
dance with the known level of noise. Figure 3 summa-
rizes the results of 10 runs of the algorithm for each of
the three similarity conditions, across all of the assumed
ρ values. The mean GCC value of the 10 derived rep-
resentations is shown, together with error bars showing
one standard error in both directions.

Figure 3 shows that the GCC is minimized at the cor-
rect ρ value for all three similarity conditions. An exami-
nation of the derived representation revealed that the cor-
rect featural representation was recovered 25 times out
of 30 attempts: nine times out of ten for the entirely dis-
tinctive data, and eight times out of ten for the evenly
balanced and the entirely common data. It is interesting
to note that Figure 3 is far more symmetric than Figure 1,
suggesting that the GCC has successfully accounted for
the differences in functional form complexity between
the common and distinctive feature approaches to mea-
suring similarity.

Additional Monte Carlo simulations with other feat-
ural representations, based on particular structures re-
ported by Tenenbaum (1996, Table 1) and Lee (1999,
Table 5), also suggested that the algorithm is capable of
recovering known configurations when more stimuli or
more features are involved, although problems with lo-
cal minima are encountered more frequently.



Table 1: Representation of Rosenberg and Kim’s (1975) kinship terms domain.

STIMULI IN CLUSTER WEIGHT

aunt uncle niece nephew cousin 0.319
granddaughter grandson grandmother grandfather 0.291
mother daughter grandmother granddaughter aunt niece sister 0.222
sister brother cousin 0.221
father son grandfather grandson uncle nephew brother 0.208
mother father daughter son sister brother 0.163
mother father daughter son 0.136
daughter son granddaughter grandson niece nephew sister brother 0.128
mother father grandmother grandfather aunt uncle sister brother 0.091
additive constant 0.563

VARIANCE ACCOUNTED FOR 92.7%

An Illustrative Example
To demonstrate the practical application of the algorithm,
we used the averaged similarity data reported by Rosen-
berg and Kim (1975), which measures similarity of En-
glish kinship terms. A data precision estimate of s = 0.09
was made based on the sample standard deviation of the
individual matrices. Since the data was obtained by hav-
ing participants sort items into different stacks, we might
expect a model that provides a weighting of common and
distinctive features to provide a better fit than one allow-
ing only for common features. Using ρ values of 0, 0.1,
0.2, . . . , 1.0, the representation with the minimum GCC
was found at ρ = 0.4.

This representation contained the nine features de-
tailed in Table 1, and explained 92.7% of the variance
in the data. Interpreting most of the features in Ta-
ble 1 is straightforward, since they essentially capture
concepts such as ‘male’, ‘female’, ‘nuclear family’, ‘ex-
tended family’, ‘grandparents’, ‘descendants’, and ‘pro-
genitors’. While this representation is very similar to the
nine-feature representation generated by additive cluster-
ing (Lee submitted, Figure 2), it explains more of the
variance in the data, suggesting that participants did in-
deed use both common and distinctive features in assess-
ing similarity.

Conclusion
We have developed, tested, and demonstrated an al-
gorithm that generates featural stimulus representations
from similarity data. Unlike previous additive clustering
approaches, the algorithm uses a symmetric version of
Tversky’s (1977) Contrast Model that measures similar-
ity in terms of both common and distinctive features. A
particular strength of the algorithm is its use of the Geo-
metric Complexity Criterion to guide the generation pro-
cess, which allows the desire for data-fit to be balanced
with the need to control representational complexity. Im-
portantly, this criterion is sensitive to the functional form
complexity of the similarity model, preventing an over-
emphasis on the inherently more complicated common
features approach.

In terms of future work, it should be acknowledged
that the symmetric version of the Contrast Model is cer-
tainly not the only possibility for combining common
and distinctive features approaches to measuring similar-
ity. Tenenbaum and Griffiths (in press) provide a com-
pelling argument for the use of the Ratio Model in the
context of their Bayesian theory of generalization. It
would also be worthwhile to examine featural represen-
tations where each feature is assumed to operate using
entirely an distinctive or an entirely common approach.
The distinctive similarity features would be those that
globally partition the entire stimulus set, as for the fea-
ture ‘male’, which implies the existence of the comple-
mentary feature ‘female’. The (more prevalent) common
similarity features would be those that captured shared
properties, such as eye or hair color, where no broader
implications are warranted.
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