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Abstract

The perform ance of a connectionist netw ork, In which
som e resources are absent or dam aged is exam ned as a
finction of varbus laming parameters. A leaming
environm ent is created by generating a set of random
‘prototypes” and clsers of exemplr vectors
sunounding each protype. An autoencoder is trained
on the pattems. The mwbustness of each lamed item is
measured as a fimction of the tine at which i was
vaoquired” by the network and is overall fiequency I
the environm ent. Both factors are shown t© hfluence
robusmess under several leaming conditions.

Introduction

For all their shortwom Ings, feed-forward network
m odels of leaming and m em ory share certain in porant
features with their biclogical counterparts. Among
these are the ability to gradually abstact statistical
regularities fiom  their envionm ents by hcorporating
them Into their connectivity stuctures and the feature
generally known as “gracefiil degradation” .

In this paper, the rlationship between early leaming
(@oquisition) and degradation of perform ance through
Joss of resources is exam ned In the context of am all-
scale simulations, n temm s of frequency effects, age of
acquisition R A) effects, protype effects, and the
Thsertion of noise Mto the neuralnetw ork .

The wlative Influence of AcA com pared to fiequency
on word nam Ing tasks has been argued am ong cognitive
psychologists and lnguists for ssverml years now
Brown & W atgon, 1987; Momison et al, 1992;
Gethard & Bany, 1998). O f course, teasing apart the
nfluences of AcA and frequency is confounded by the
stoong conelation between them . AcA effects have
also been reported In other dom ains, such as objct
entification and face recognition M ocore & Valentne,
1999). The effects of AcA and frequency on pattem
enor have been analyzed by Smih, Cotrell, and

Anderson 2001). Here, we Jook atpattem perform ance
n the face of damage to the network, simulating
neuronal failire as could occurw ith aging ortraum a.

The mbusmess of netw ork perform ance t© hidden unit
damage has been chown to Impmwve for networks
trained w ith noise among the hidden unis Judd &

M unio, 1993). Tn some cases, this kind of noise has
been shown to in prove the generalization properties of
a nework Cly & Sequin, 1990). Functionally, the
hidden rmpresentations of the taning iems settle t©
sates that are further gpart n tem s of a Euclidean
measue.

In this paper, we examne the folowing three
hypotheses:

1. The mwbushess of an iem under loss of netw ork
com putational resources @nalogous to the loss of
neurons n hum ans) is rlated both to the tine at
which that tem was “acquired”, and to the average
frequency of the item in the netw ork’s experience.

2. Prototypical item s are m ore mwbust than exem plars,
even if they are never explicitly presented to the
netw ork, since they share features w ith populations
of exemplars, and thus have high ‘“effective
frequencies” in the environm ent.

3. Early explicit lraming of prototypes can resultn a
more wbust set of ntermal exem plar Epresenta-
tons.

M ethodology

The traning sst

A two-SEp process is used o generate a stuctured set
of bit srings of length L. First, a sst of N prototype
strings is produced by generating 0 and 1 values



Independently w ith probability 0 5 foreach bithaving a
valie 1. T the second step, a setof n; exem plar strings
are generated from the 1 prototype P; by “flipping” bits
w ih a Jow probabiliy. The result isa sstof N pattem
“clusters” (see Figure 1). W hile the netw ork is trained
on the exem plarpattems only, the netw ork perform ance
ism easurad forboth the exem plars and the prototypes.
In this study, L=100,N=10,and n;=10, (=1..10).
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Figure 1. Schematic view of the tanhing pattems.
Prototypes (Open squares) are random ly generated

binary srings. A set of exemplars (filled circcles) is
generated In the neighborhood of prototype.

In oder to analyze the wl of fiequency, iem s were
slected from the training set according to a mmp
distribution; that is, the selection probabilites for the
100 exemplrs ranged from approxin ately 0.0002 t©
0.0200 linearly. The probabilites were assigned such
that the cluster probabilides also followed a ramp
disroution. T other words, the iem s were orderad
according t© the parent prototypes and the probability
of selecting the k™ item was proportional to k. This
way, the clusers were alo orered such that the
probability of selecting an iem from the §* clusterwas
proportional o J.

N etw ork A rchitecture

Networks trained by backpropagation t© reconstuct
their Iput pattem at the output layer @Eutoencoders)
w ith a sihgle hidden layer of 40 units are trated using
backprop. In some trials, the regponses of the hidden
units are random Iy pertutbed to analyze the effect of
network noise. An output unit’s response is deamed
“ocorect” if it differs fiom the target by less than a
predeterm ined tolkrance level 8. Perfomance is
measured In tems of the number of conect output
units. If the netw ork regponds w ith a sufficient num ber
of conrect output units to an input pattem, that pattem
has been acquired by the network. The point in

training at w hich a pattem is first acquired is called its
age of acquisiion @oA). Prlin hary studies have
shown that h some cases a pattem may brefly be
“forgotten” soon affer its il acquisiton. T such
nstances, the forgotten pattem is prom ptly reacquired;
thus, the AcA is defined as the tim e the pattem is first
acquired.

Perform ance Analysis

A fter taining, the netw ork’s regponse o each training
pattem was tesed under various damage levels.
D am age was In plem ented by only allow ing the output
of k of the H hidden units to stim ulate the output layer,
where k isvaried from 1 to H. The m ininum num ber
of hidden units required to reconstuct the Input pattem
(o w ithin a gpecified degree of tolerance) is recorded as
am easure of the pattem’s robustmess in the netw ork. T
some cases, pattems wer “forgoten” after inital
acquisition. Tn most such cases, the pattem was
reacquired, butnotalw ays.

Experin entalConditons

Tn all the experim ents, the acquisition criterion is that
95 outof 100 units should be w ithin 02 of thelr target
value (0 orl). The el taining tm e is either 50000 or
100000 pattem presentatons, depending on  the
conditon. Thus, w ith the ram p distrbution, the num ber
of presentations of each ndividual pattem varies from
about10 to about2000.

Control Conditon (CC) In the control conditon, the
network is ttrained wih just the 100 exemplars for a
period of 100000 pattem presentations.

Head Start Condidon HC) Her, the talning set
consists a subset of only 10 pattems (one from each
cluster) of the fill set of 100 exemplrs for the first
10000 tine geps. This is done to guarantee very low
A oA son som e pattems. The training set is expanded t©
the fll set, mcluding the inidal subset, for 90000 m ore
presentations. Ellis & LambonRalph @000) found
stong A A effects In a saged leaming condition of this
kind.

Noisy Condibon (NNC) This conditbon is the same as
the previous condiion HC) wih “Boolean” noise
hjpcted nto the hidden layer during the early phase.
Here, the activity Jevels of a am all num ber of hidden
units are muldplied by -1. This manijpulton is
predicted to ncrease the overall wbusmess of the fiall
taining set.

Prototype Conditon PC) I this varation of HC, the
network is traned on only the protoypes during the
early phase w ith no Ihjected noise. N ote thatprototypes



are never explicitly presented In the previous three
conditions.

Resuls

ATl conditions show a stong dependence of AcA on
frequency. Tn general, prototype pattems are acquired
earlier than exemplar pattems, even if they are not
explicitly presented, wih the AcA of the prototypes
dependent on average frequency of the cornesponding
exem plars.

ControlCondition CC)

Over the ooursee of 100000 exemplr pattem
presentations, 92 of the 100 exem plars were acquired
by the netw otk .. The eight nonacquired exem plars w ere
all am ong the 11 least frequent. O £ the 10 prootypes,
one was not acquired, and eight were acquired In the
first 10000 iemations. A scatterplot of AcCA  vs
frequency follow s a hyperbolic trend Fig 2, top). This
cbservation prompted a second scattewplot Fig 2,
botom), T which AcA is examied vs. fieg' .
Regression on these data indicates the product of AcA
and frequency isabout 190 (zero hterosptassum ed).
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Figure 2: AcA vs Frequency (op) and AcA vs. Freqg ™
fottom ). The rmndom selection of stmuli In the
sin ulation follow s a ram p distrbution to give a w de
1ange of frequencies.

45

IL.. o000 e o o0 o e o

40 <@ .o -

o e @eé o o o0 L]
- L] L K]

2| FRE pEm——
g 35 * .-o:- . ¢ Pototypes
o L) .
z iy

30 I!|j .

25 T T

0 20000 40000 60000 80000 100000
AoOA

Fgure 3. The number of hidden unis required ©

reconstmict the nputas a function the AcA . A value of
41 indicates thatw hen the sin ulation halted, the pattem
could notbe reconstructed w ith al140 hidden units.

The fiagility of each iem , as m easured by the num ber
of hidden units required to reconstuict the pattem tends
o be higher for the pattems w ith laterAcA (1e., earlier
pattems are more wbust). This is tue for both the
exem plars and the pototypes Fig 3). Sin flarly, tems
thatare m ore fisquent tend to bem ore wwbust Fig 4).
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Fgure 4. The rquired num ber of hidden units vs.
frequency. The trendline chows that more friequent
item s tend to be m ore wbust.

Regression against both variables indicates that the
nfluence of AcA = 0.01139) is stonger than
frequency = 0.03271) by a factorof aln ost three.

Head StartConditon HC)

Here, the first 5000 ierations use only a subsst of 10
item s (one exem plar from each prototype’s “cluster”) is
for taining. The netw ork is then exposad o the entire
set of 100 exemplrs for 45000 subsequent leaming
trals. Selection of pattems during early exposure also
llows a mmp diszbution, giving a varety of
frequenciesw ithin this set.



Early Ttem s. N ne of the 10 iem s presented alone for
the first 5000 tim e steps are leamed before presentation
2000. Four of them are acquired before the earliest
prototype (1000 ierations). The least frequent item 1
this set was never leamed. As I CC, AcA and
frequency are highly conelated.

Prototypes. The mean AcA for prototypes under HC
12907) is later than it is under CC (10568) and the
average prottype is slightly less mobust under HC
3575HU) than underCC (3422HU).
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Figure 5. The dependencies of mobusmesson AcA  (op)
and frequency ottom ) underH C .

Prototype Conditon ®C)

This conditon is ke HC, except that the ten pattems
presented I the early phase are the prototypes of the
lter pattems. No significant differences 1n the effects
on mbusmess orA oA w ere observed in the PC wlative
HC.

Noisy Conditbon (NC)

As 1 the case of PC, this conditon produced m ainly
negative results. No significant effect of the noise was
noticed on the aocquisiton or mbusmess of the
exemplars. The man cbserved effect of noise is that

the prototypes are acquired much faster. How ever, the
network does not mantan the ability to reconstuct
prootypes friom the ow frequency clusters. N everthe-
Jless, those prototypes that are m antaned can w ithsand
m ore dam age t© the netw ork.

The bar gmphs In Figure 6 digply the AcA and
wbusness HU mequird) for the prototype pattems,
such that they can be comparad wih conesponding
values in the control condition (olack bars=NC , striped
bars=CC).

40000

7
o’
30000—5
ol
KC20000*?
o
10000—5
N
1 2 3 4 5 6 7 8 9 10
Prototypes
50 I
Tj4o— 7
i A7 |
oI 1
o 7 17 7 17
=" A A7
: A 1
0 AR 7V
A A

Prototypes
Figure 6. D istroutions of AcA (op) and the r=quired
num ber of hidden units (pottom ) are displayed for the
control condition (strped bars) and NC  dark bars). The
10 iems are ranked from lowest @pprox. 0.018) t©

highest frequency @Epprox. 018). The network was
never ablke t© mwoonsouct the lowest fiequency
prototype #1), hence there is no bar for this condition.
The m axinum valie for the Jow erbargraph is the total
num ber of hidden units, 40. A value of 50 m eans that
the netw ork could not reconstruct those prototypes at
the end of the sin ulation.

Conclusions

As a preamble t© the data analysis, the rlationship
between AcA and fiequency was exam ined. These
variables were found t© be stongly wlated by a
function of the form a=k/ where a isthe AcA |, £is the
frequency, and k is a consant @efer o Fig 2). Even



though this did not bear directly on the hypotheses, it
m ay be the stongest resultof this paper!

Our results support the first tw o hypotheses. The first
hypothesis, that both frequency and AcA influence
wbusmess of a leamed iem Is evident fiom the
sinulations. Bivarate r=gression of the robusmess
varidble HU mrequited) against the wo independent
variables gave fits that w ere not very tight ({e., the p
values were too high for the results t be considered
significant). N evertheless, the value conesponding t©
AoA was consisently lower than that for fiequency,
Indicating a stronger dependence of robustness on A oA .

The second hypothesis, that prototypes are m ore robust
than exem plars w as supported by the sin ulations. The
effect is as stong as expected by the measure used
here: under CC, prototypes require an average of 34 3
HU, while exemplars require 36 3 HU . Note that this
may sinply by a byproduct of the AcA effect, since
prototypes are acquired much earlier than exem plars.
Frequency also plays a wle. Even when the prototypes
are notexplicitly presented, and thus have no frequency
per =, the exemplrs may be considered distorted
versions of the prototypes. Hence, each prototype has
an ‘“effective frequency” that depends on the total
frequency of its supporting exem plars w eighted by the
exem plarprototype disances.

O ur sin ulations did not support the third hypothests,
that early explicit prototype training would result n
Epresentations that are more wbust. W hile no such
effecthas yetbeen observed, it rem ains as a subjpct for
future nvestigation .

D iscussion

The issues Investigated In this study are the first steps
o the exploration of a bmwader question: How does
the adult cognitive stucture ultin ately depend on the
Titial stages of leaming? This question is quite sin ilar
o the age-old debate of nature vs. nuttire. Here the
issue is whether some potential for later cognitive
capabilities is dependent, not on nnate factors, but on
the content of early experience and the biological
m echanism s atw ork.

The process of acquisition of nfom ation, the sequence
T which iem s are presented to the leamer, as well as
the ntemal param eters of the leamer, may ply a
determ Ining 1ok in the adult conceptual axchitecture. It
m ay be that the representations of concepts acquirad In
childhood, and the associations form ed among them
constiicta foundation on w hich later concepts are built.
Hence, the soundness of this foundation m ay detemm ine
the ultim ate busmess of the adult.

Cerainly, the in portance of early leaming on cognitive
developm ent has been acknow ledged (for example,
Catherwood, 1999). T the present work, we have
begun t© examine this wihih the oconnectionist
fram ew ork, w hereby adult cognitive perform ance m ight
be Iinked to the satdstics of the leaming environm ent n
early childhood.
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