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Abstract

The performance of a connectionist network, in which
some resources are absent or damaged is examined as a
function of various learning parameters.  A learning
environment is created by generating a set of random
“prototypes” and clusters of exemplar vectors
surrounding each prototype.  An autoencoder is trained
on the patterns.  The robustness of each learned item is
measured as a function of the time at which it was
“acquired” by the network and its overall frequency in
the environment.  Both factors are shown to influence
robustness under several learning conditions.

Introduction
For all their shortcomings, feed-forward network
models of learning and memory share certain important
features with their biological counterparts.  Among
these are the ability to gradually abstract statistical
regularities from their environments by incorporating
them into their connectivity structures and the feature
generally known as “graceful degradation”.

In this paper, the relationship between early learning
(acquisition) and degradation of performance through
loss of resources is examined in the context of small-
scale simulations, in terms of frequency effects, age of
acquisition (AoA) effects, prototype effects, and the
insertion of noise into the neural network.

The relative influence of AoA compared to frequency
on word naming tasks has been argued among cognitive
psychologists and linguists for several years now
(Brown & W atson, 1987; M orrison et al., 1992;
Gerhard & Barry, 1998).  Of course, teasing apart the
influences of AoA and frequency is confounded by the
strong correlation between them. AoA effects have
also been reported in other domains, such as object
identification and face recognition (M oore & Valentine,
1999).  The effects of AoA and frequency on pattern
error have been analyzed by Smith, Cottrell, and

Anderson (2001).  Here, we look at pattern performance
in the face of damage to the network, simulating
neuronal failure as could occur with aging or trauma.

The robustness of network performance to hidden unit
damage has been shown to improve for networks
trained with noise among the hidden units (Judd &
M unro, 1993).  In some cases, this kind of noise has
been shown to improve the generalization properties of
a network (Clay & Sequin, 1990).  Functionally, the
hidden representations of the training items settle to
states that are further apart in terms of a Euclidean
measure.

In this paper, we examine the following three
hypotheses:

1. The robustness of an item under loss of network
computational resources (analogous to the loss of
neurons in humans) is related both to the time at
which that item was “acquired”, and to the average
frequency of the item in the network’s experience.

2. Prototypical items are more robust than exemplars,
even if they are never explicitly presented to the
network, since they share features with populations
of exemplars, and thus have high “effective
frequencies” in the environment.

3. Early explicit learning of prototypes can result in a
more robust set of internal exemplar representa-
tions.

M ethodology

The training set
A two-step process is used to generate a structured set
of bit strings of length L.  First, a set of N prototype
strings is produced by generating 0 and 1 values



independently with probability 0.5 for each bit having a
value 1.  In the second step, a set of ni exemplar strings
are generated from the ith prototype Pi by “flipping” bits
with a low probability.  The result is a set of N pattern
“clusters” (see Figure 1).  W hile the network is trained
on the exemplar patterns only, the network performance
is measured for both the exemplars and the prototypes.
In this study, L=100,N=10, and ni=10, (i=1...10).
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Figure 1.  Schematic view of the training patterns.
Prototypes (open squares) are randomly generated
binary strings.  A set of exemplars (filled circles) is
generated in the neighborhood of prototype.

In order to analyze the role of frequency, items were
selected from the training set according to a ramp
distribution; that is, the selection probabilities for the
100 exemplars ranged from approximately 0.0002 to
0.0200 linearly.  The probabilities were assigned such
that the cluster probabilities also followed a ramp
distribution.  In other words, the items were ordered
according to the parent prototypes and the probability
of selecting the kth item was proportional to k.  This
way, the clusters were also ordered such that the
probability of selecting an item from the jth cluster was
proportional to j.

Network Architecture
Networks trained by backpropagation to reconstruct
their input pattern at the output layer (autoencoders)
with a single hidden layer of 40 units are trained using
backprop.  In some trials, the responses of the hidden
units are randomly perturbed to analyze the effect of
network noise.  An output unit’s response is deemed
“correct” if it differs from the target by less than a
predetermined tolerance level δ.  Performance is
measured in terms of the number of correct output
units.  If the network responds with a sufficient number
of correct output units to an input pattern, that pattern
has been acquired by the network.  The point in

training at which a pattern is first acquired is called its
age of acquisition (AoA).  Preliminary studies have
shown that in some cases a pattern may briefly be
“forgotten” soon after its initial acquisition.  In such
instances, the forgotten pattern is promptly reacquired;
thus, the AoA is defined as the time the pattern is first
acquired.

Perform ance Analysis
After training, the network’s response to each training
pattern was tested under various damage levels.
Damage was implemented by only allowing the output
ofk of the H hidden units to stimulate the output layer,
wherek is varied from 1 to H.  The minimum number
of hidden units required to reconstruct the input pattern
(to within a specified degree of tolerance) is recorded as
a measure of the pattern’s robustness in the network.  In
some cases, patterns were “forgotten” after initial
acquisition.  In most such cases, the pattern was
reacquired, but not always.

Experim ental Conditions

In all the experiments, the acquisition criterion is that
95 out of 100 units should be within 0.2 of their target
value (0 or 1).  The total training time is either 50000 or
100000 pattern presentations, depending on the
condition.  Thus, with the ramp distribution, the number
of presentations of each individual pattern varies from
about 10 to about 2000.

Control Condition (CC)In the control condition, the
network is trained with just the 100 exemplars for a
period of 100000 pattern presentations.

Head Start Condition (HC) Here, the training set
consists a subset of only 10 patterns (one from each
cluster) of the full set of 100 exemplars for the first
10000 time steps.  This is done to guarantee very low
AoAs on some patterns.  The training set is expanded to
the full set, including the initial subset, for 90000 more
presentations.  Ellis & Lambon-Ralph (2000) found
strongAoA effects in a staged learning condition of this
kind.

Noisy Condition (NC) This condition is the same as
the previous condition (HC) with “Boolean” noise
injected into the hidden layer during the early phase.
Here, the activity levels of a small number of hidden
units are multiplied by –1.  This manipulation is
predicted to increase the overall robustness of the full
training set.

Prototype Condition (PC)In this variation of HC, the
network is trained on only the protoypes during the
early phase with no injected noise.  Note that prototypes



are never explicitly presented in the previous three
conditions.

Results
All conditions show a strong dependence of AoA on
frequency.  In general, prototype patterns are acquired
earlier than exemplar patterns, even if they are not
explicitly presented, with the AoA of the prototypes
dependent on average frequency of the corresponding
exemplars.

Control Condition (CC)

Over the course of 100000 exemplar pattern
presentations, 92 of the 100 exemplars were acquired
by the network. The eight nonacquired exemplars were
all among the 11 least frequent.  Of the 10 prototypes,
one was not acquired, and eight were acquired in the
first 10000 iterations. A scatterplot of AoA vs
frequency follows a hyperbolic trend (Fig 2, top).  This
observation prompted a second scatterplot (Fig 2,
bottom), in which AoA is examined vs. freq-1.
Regression on these data indicates the product of AoA
and frequency is about 190 (zero intercept assumed).
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Figure 2: AoA vs Frequency (top) and AoA vs. Freq-1

(bottom).  The random selection of stimuli in the
simulation follows a ramp distribution to give a wide
range of frequencies.
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Figure 3.  The number of hidden units required to
reconstruct the input as a function the AoA.  A value of
41 indicates that when the simulation halted, the pattern
could not be reconstructed with all 40 hidden units.

The fragility of each item, as measured by the number
of hidden units required to reconstruct the pattern tends
to be higher for the patterns with later AoA (i.e., earlier
patterns are more robust).  This is true for both the
exemplars and the prototypes (Fig 3).  Similarly, items
that are more frequent tend to be more robust (Fig 4).
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Figure 4.  The required number of hidden units vs.
frequency.  The trendline shows that more frequent
items tend to be more robust.

Regression against both variables indicates that the
influence of AoA (p = 0.01139) is stronger than
frequency (p = 0.03271) by a factor of almost three.

Head Start Condition (HC)
Here, the first 5000 iterations use only a subset of 10
items (one exemplar from each prototype’s “cluster”) is
for training.  The network is then exposed to the entire
set of 100 exemplars for 45000 subsequent learning
trials.  Selection of patterns during early exposure also
follows a ramp distribution, giving a variety of
frequencies within this set.



Early Item s.  Nine of the 10 items presented alone for
thefirst 5000 time steps are learned before presentation
2000.  Four of them are acquired before the earliest
prototype (1000 iterations).  The least frequent item in
this set was never learned.  As in CC, AoA and
frequency are highly correlated.

Prototypes.  The mean AoA for prototypes under HC
(12907)is  later than it is under CC (10568) and the
average prototype is slightly less robust under HC
(35.75 HU) than under CC (34.22 HU).
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Figure5.  The dependencies of robustness on AoA (top)
and frequency (bottom) under HC.

Prototype Condition (PC)

This condition is like HC, except that the ten patterns
presented in the early phase are the prototypes of the
later patterns.  No significant differences in the effects
on robustness or AoA were observed in the PC relative
to HC.

Noisy Condition (NC)

As in the case of PC, this condition produced mainly
negative results.  No significant effect of the noise was
noticed on the acquisition or robustness of the
exemplars.  The main observed effect of noise is that

the prototypes are acquired much faster.  However, the
network does not maintain the ability to reconstruct
prototypes from the low frequency clusters.  Neverthe-
less, those prototypes that are maintained can withstand
more damage to the network.

The bar graphs in Figure 6 display the AoA and
robustness (HU required) for the prototype patterns,
such that they can be compared with corresponding
values in the control condition (black bars=NC, striped
bars=CC).
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Figure 6.  Distributions of AoA (top) and the required
number of hidden units (bottom) are displayed for the
control condition (striped bars) and NC (dark bars). The
10 items are ranked from lowest (approx. 0.018) to
highest frequency (approx. 0.18).  The network was
never able to reconstruct the lowest frequency
prototype (#1), hence there is no bar for this condition.
The maximum value for the lower bar graph is the total
number of hidden units, 40. A value of 50 means that
the network could not reconstruct those prototypes at
the end of the simulation.

Conclusions
As a preamble to the data analysis, the relationship
between AoA and frequency was examined. These
variables were found to be strongly related by a
function of the form a=k/f, where a is the AoA,f is the
frequency, and k is a constant (refer to Fig 2). Even



though this did not bear directly on the hypotheses, it
may be the strongest result of this paper!
Our results support the first two hypotheses.  The first
hypothesis, that both frequency and AoA influence
robustness of a learned item is evident from the
simulations. Bivariate regression of the robustness
variable (HU required) against the two independent
variables gave fits that were not very tight (i.e., the p
values were too high for the results to be considered
significant).  Nevertheless, the value corresponding to
AoA was consistently lower than that for frequency,
indicating a stronger dependence of robustness on AoA.

The second hypothesis, that prototypes are more robust
than exemplars was supported by the simulations. The
effect is as strong as expected by the measure used
here: under CC, prototypes require an average of 34.3
HU, while exemplars require 36.3 HU.  Note that this
may simply by a byproduct of the AoA effect, since
prototypes are acquired much earlier than exemplars.
Frequency also plays a role.  Even when the prototypes
are not explicitly presented, and thus have no frequency
per se, the exemplars may be considered distorted
versions of the prototypes.  Hence, each prototype has
an “effective frequency” that depends on the total
frequency of its supporting exemplars weighted by the
exemplar-prototype distances.

Our simulations did not support the third hypothesis,
that early explicit prototype training would result in
representations that are more robust.  W hile no such
effect has yet been observed, it remains as a subject for
future investigation.

Discussion
The issues investigated in this study are the first steps
into the exploration of a broader question: How does
the adult cognitive structure ultimately depend on the
initial stages of learning?  This question is quite similar
to the age-old debate of nature vs. nurture.  Here the
issue is whether some potential for later cognitive
capabilities is dependent, not on innate factors, but on
the content of early experience and the biological
mechanisms at work.

The process of acquisition of information, the sequence
in which items are presented to the learner, as well as
the internal parameters of the learner, may play a
determining role in the adult conceptual architecture.  It
may be that the representations of concepts acquired in
childhood, and the associations formed among them
construct a foundation on which later concepts are built.
Hence, the soundness of this foundation may determine
the ultimate robustness of the adult.

Certainly, the importance of early learning on cognitive
development has been acknowledged (for example,
Catherwood, 1999).  In the present work, we have
begun to examine this within the connectionist
framework, whereby adult cognitive performance might
be linked to the statistics of the learning environment in
early childhood.
.
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