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Abstract

A ocom putational m odel of a user navigating W eb pages
wasused to dentify factors thataffectW eb site usability .
The model approxin ates a typical user searching for
spoecified target nform aton n archiectures of varying
menu depth. Search stategies, lnk ambiguiy, and
memory capacity werre varied and model predictions
com pared t© hum an user data. A good fit to cbserved
data w as obtained foram odel thatassum ed users 1) used
little m em ory @paciy; 2) sslected a Ink whenever is
perceived lkelhood of success excesded a threshold;
and, 3) opportunistcally searched below threshold links
on selected pages prior to retuming to the parentpage.

Introducton

The W orld W ide W eb continues to revolutionize how

people cbtam nform ation, buy products, and conduct
business transactions. Yet many companies and
organizations struggle to design W eb sites that
customers can easily navigate to find products or
Inform ation . The ddentification of factors that affect the
usability of the World W ide W eb has become
creasingly inportant. W hile many of these factors
concem the graphical layoutof each page naW eb site,
the way in which the pages link to each other, often
called the sies nformation arwhiecture, plays a
decisive ole In the site's usability, especially for sites
allow ing access to large dattbases Rosenfeld &

M orville, 1998) Our effort focuses on understanding

how a site's nform ation architecture in pacts a users
ability to effectively find content In a linked
nform ation structure such asaW eb site.

We develop our undersanding through the
consttuction and testing of a working com putational
m odel. The m odel sim ulates a usernavigating through a
site m aking choices aboutw hether to selcta given link
or evaluate an altemate lnk on the same page.
Constucting and testing a working model not only
complements empircal studies, but alo offers
advantages over em pirical usability testing. Em pirical
studies are generally too expensive and tim e consum ing
to address the w ide range of content, configurations,
and user stategies that characterize the W eb. In

contrast, an In plem ented m odel can nn thousands of
sin ulated sessions In m Inutes. A 1o, em pirical studies
do not inherently provide explanations for their results
and thus make it more difficult to determ ine how a
given resultgeneralizes to other circum stances, w hereas
a oognitive model can describe the underlying
processes that produce behavior. For example,
com putational models have been used to highlight
pattems of nteractions w ith a brow ser Peck & John,
1992) and report on the accessbility of the sites
content (Lynch, Paln iers Til, 1999).

In this paper, we build upon methods that we
presented In an earlier paper M iller & Remington,
2000a) . For the sake of presentation, we describe the
m ethods and ourm odel In its entirety . W e Introduce a
new navigation strategy and show how the models
aggregate behavior tightly fits results from an em pirical
comparison of different gite archiectures Larson &
Czew Inksi, 1998). Fially, we experiment wih the
m odels assum ptions by exploring altemate designs and
param eters In oxder o help identify critical elem ents In
them odelsdesign.

M odeling Inform ation N avigation

W e sin ulate comm on pattems of user nteraction w ith a

W eb gite with the goal of providing usefuil usability

com parisons between different site architectures. A

m odel that precisely replicates a user’s navigation isnot

possible, nor is itnecessary . U sefi1l inform ation can be

obtained firom a sim ple m odel that captures functionally
significant properties of the user and site architecture.

Her we show how a simple model can predict and

explain benefits of one design over another, such as

w hen it is advantageous to use a tw o -dered site nstead

of a three-tered site.

In constructing our model, we use the follow Ing
prnciples:

e Themodel should only perform operations thatare
w ithin the physical and cognitive lim itations of a
hum an user. m W eb navigation, for exam ple, lin its
on visual attention dictate that a user can only
focus upon (@nd evaliate) one link at a tme.
Likewise, linis on shorttem memory dictate



navigation stategies that mninize memory
requirem ents, an assumption oonsistent wih
evidence that people often adopt memory
m nin ization stategies Ballaxd, Heyhoe, Pook, &
Rao,1997).

e The model should make sinplifying assum ptions
w henever they are not lkely to have much in pact
on aggregate behavior. For example the model
takes a fixed am ountof tim e to evaluate a link even
though hum an users’ tim es are certainly variable.
Since the model sinulates the average user, this
sin plification will provide a good fit given a
masonable estinate of fixed time from human
perfom ance data Card,M oran & Newell, 1983).

e The model should employ the most effective
strategy fora given environm entunless com pelling
evidence from hum an usage suggests cherw ise.
G ven the large setof navigation strategies that can
operate within reasonable physical and cognitive
Im iatons, we exam ne a stategy that is most
effective w ithin known cognitive constraints. This
design constramt is the mtonality principle (see
Card,M oran & Newell, 1983), which assum es that
hum an cognition isgenerally ational.

Representinga W eb Site

Our model Intemcts wih a smplified, abstact
representation of a W eb brow serand a W eb site. Each
gite has one rootnode (ie. the top page) consisting of a
list of labeled links, each leading to a separmate child
page. For a shallow, one-level site, child pages are
term nal pages, one of which contains the target
Inform ation that the user is seeking. For deeper, m ultd-
level sites, a child page consists of a list of 1inks, each
leading t© child pages at the next level. The botiom
level of all our sites consists exclusively of temm inal
pages, one of which is the target page. O ur exam ples
are balanced trees ({e.pages atthe sam e levelhave the
sam e num ber of links) since we generally com pare our
results o studies that use balanced tree sttuctures e€g.
M iller, 1981 and Laron & Czewinski, 1998).
H ow ever, our representation does not prevent us from
mwnning sin ulations on unbalanced trees, or even on
structures mvolving m ultple 1inks to the sam e page and
Iinks back t parentpages.

W hen navigating through a site, a userm ust perceive
Iink labels and gauge their levance to the targeted
nform ation. Rather than model the complex and
Tnteresting process of link evaluation, we fix a num ber
for each link, which represents the users Imm ediately
perceived likelihood that the target w ill be found by
pursung this lnk. This sinplification allows us t©
easily nvestigate a range of num erical relationships
betw een the Iink labeland the target inform ation.

T an deal situation, after evaluating a link, the user
would know w ith certamnty w hetherto selectand pursue
that Iink. Figure 1 represents a site with such lnks.
Each lnk (underlined number) on each W eb page is
understood w ithout am biguity. The user need only
follow the links labeled with a 1.0 t find the targeted
page w ith no backtracking.W e describe the architecture
of this site ashaving a tw o -dered, 4x2 stucture.
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Figure 1 Siew ith sure path

M ore often, the user is less certamn of which Ink t©
select. The links In the site shown I Figure 2 arem ore
am biguous. For the top page, the m ost likely link has a
perceived likelihood of only .7, thus ndicating that the
user is less certam that this Iink w ill lead to the a1geted
Iem . Th som e cases, a user stategy thatm erely follow s
the m ost likely links would directly lead to the target.
H ow ever, this figure show s a site w here the userw ould
find the target underw hat he or she perceives as a less
plausible sequence of 1ink selections (the target isunder
a likelihood value of 02 Instead of the 05 value). Tn
this way it is possble t© represent sites that differ
w dely In stzength of association betw een link labeland
target nform ation.
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Figure 2 Site w ith am biguous labels

M odeling the Brow ser and U ser A ctions
Byme et al. (1999) found that selecting a lnk and
pressing the B ack button accounted forover80% of the
actionsused forgoing to anew page. Consequently, we
focused our modeling on the component actions
underlying these behaviors. These nclude:

e Selecting a link
e  Pressing the Back Button



e A ttending to and identifying anew page
e  Checking a Iink and evaluating its likelihood

To further simplify our model, atending to and
dentifying a new page can be folded into the actions of
Selecting a Link and Pressing the Back Button since
this action only occurs when either of these actions
occur. O urrevied m odelhas three prim ive actions:

e Selecting a link (End attending to and identifying a
new page)

e DPressing the Back Bution (@nd attending to and
dentifying anew page)

e  Checking a link and evaluating its likelihood

Because of physical and cognitive lim itations, only
one of these actions can be perfom ed at any one tim e.
Fixed tim es are assigned t© each action to account for
Is durmation during a simulation. The model also
simnulates changing the oolor of a lnk when it is
selected so that the modeled user can ‘“perceive”
w hether the page under this link w as previously visited .

M odeling N avigation Strategies

The m odel navigates a W eb site by serially executing
these three prim ibve actions, m eaning that lnks are
sequentially evaluated. Serial evaluation is m otivated
by evidence that the hum an user has a single unique
focus of attention thatm ust be directed at the link for
thisdecision.

A user could em ploy any of a large set of possble
strategies for link selection that vary in sophistication.
Tw o examples nchide:

e The threshold smategy: The user inmediaely
selects and pursues any link whose probability of
success exceeds threshold.

e The com parison strategy: The user first evaluates
a set of links and then selects the m ost lkely of the
set.

The threshold stategy is m ost effective if the first
Iikely lnk actually leads to the targeted object. The
com parison stategy is more effective only if a lkely
Ink is llowed by an even mor lkely lnk that
actually leads t© the tarmgeted item . Both represent
sinple yet effective stategies. W e chose © begin by
exam Ining the threshold strategy on the principle that it
requires the few est com putational (cognitive) resources.

The m odel is neutral as © the actual oxder in which
the Iinks are evaluated. The design and layoutofapage
principally determ ine w hich links a userw ould evaluate
first. Any undersanding ofhow page layoutand design
affect the user's focus could eventually be corporated
nto the model. For our purpose of mvestigating site
structure, the m odel sin ply establishes a fixed order n
which lnks are evaliated for each mn. To avoid
System atic oxderbiases, our sin ulations random 1y place

the argeted item at a different term tnal page for each
mn.

W ith the appearance of a new page, the models
threshold strategy firstattends to the page, which, if itis
a tem nal page, nclides checking if it contains the
target nfom ation. If itdoes not, the m odel sequentally
scans the links on a page selecting any link whose
likelihood is equal o or above a fixed threshold (05 in
the sin ulations reported below ). W hen a page appears
by selecting a link, the pmocess of checking and
scanning the page is repeated.

O nce the m odeldetects no unselected links above the
threshold value, itretums to the parentpage by pressing
the Back button and continues scanning lnks on the
parentpage starting at the last selected link . Ttdoes not
scan 1inks ithas already evaluated. D eterm Ining the last
link selected places no dem ands on m em ory since the
last selected 1ink is easily detected by is color, and
m any brow sers retum the userto the location of the last
selected 1ink.

Selecting the m ostprobable 1ink w ill often lead t© the
targeted iem . However, som etimes the tawgeted iem
Ties behind ostensbly i p robable links and, after som e
nital faihires, hum an users must st selectng links
even if the link labels Indicate that they w ill probably
not lead to the targeted item . An earlier version of our
model M iller & Rem ington, 2000a) started selecting
npwobable lnks only after com pleting a filll taversal
of the site. W e w ill call this the traversefirst strategy .
However, a mor effective stmategy may
opportunistically select in probable links ata low er ter
mmmediaely after trying the more probable links and
before retuming to a higher tier n the site. W e call this
the opportunistic stategy .

Figure 2 illustrates how the opportunistic stategy
m ay be m ore effective. The m odel scans across the top
page and sekcts the second link (0.7). On the second
level it selects the first link it encounters (05). A fter
discovering that this is not the targeted item , it retums
o the page on the second level. How ever, before
rtuming o the top level, it temporarly reduces its
threshold to 01, selects the second link (0 2) and finds
the target on the new page. Had the targeted item been
elsewhere I the site, the stategy backs up twice,
retuming o the top-level and resetting the threshold to
the previousvalue (0 5).

The opportunistic stategy is m ore efficient than the
traverse-first stategy . First, it explores less probable
links when the cost of dolng so is m ninal, that is,
when the less probable links are Inm ediately available.
Secondly, it Inplicitly takes mto account the positive
evaluation of the parent link, which had mdicated a
high likelhood that the argeted item is undera link on
the currentpage.



The opportunistic stategy is notefficient if em ployed
n cases where all the links on a page have very ow
Iikelihood values defined as less than 01). In such
cases our m odel assum es that the user has sufficient
memory t© know that rescanning the page would be
futdle, and retums to the parent page. This m em ory of
know Ing that the page has nothing worthw hile only
lasts as long as the m odel rem ains on the current page.
Thus, if the m odel leaves the page and then r=tums t©
this sam e page, the m odel m ust assum e that the page
m ay be w orth rescanning and the opportunistic soategy
is em ployed. This qualification is also consistent w ith
our design principles mn that it contrbutes © an
effective strategy w hilem Inin izing m em ory resources.

W hile generally consistent w ith our design principle
of preferring stategies that place m Inin al dem ands on
m em ory, the opportunistc strategy does require state
values t© be held m memory. I opportunistdc search
fails to find the targeted item , the m odelm ust reset the
Iink selection threshold to the previous value upon
retuming o the upper level. Resetting a value requires
storing the old value before reducing it. Storing and
recalling one or two values reasonably 21l w ithin the
Iim its of hum an cognition, but storing and recalling an
arbitrary num ber of values does not. For this reason,
our model allows us t© fix alin it on the number of
previous threshold values it can recall. W e nitally set
this number t© one, but later n this paper we will
explore the Inpact of being able to store and recall
additionalvalies.

Part of our rason for adopting the opportunistic
stategy In place of the traverse-first stategy w as our
exam Ination of usage logs for a site search task. W e
conducted a pilbot study using a W eb site whose
stucture minored a popular deparment sore’s
omanization. Prelin nary results suggest that users
frequently select ostensibly less probable 1inks before
backttacking to other possibilides (e M iller &
Ream ington, 2000b, for mor details and an example).
W eplan future studies thatcould further identify usages
of this strategy .

Sin ulation Param eters

Ourprevious w ork established plausible tin e constants
for Ilink evaluation and link selection ™ iller &
Rem Ington, 2000a). W e compared the model and
reaults fiom hierarchical menu selection studies and
obtained good fits w ith 1ink evaluation costs setto 250
m s and link selection costs set to 500 m s. The use of
tim e constants iswell esablished €g., Card, M omn, &
Newell, 1983) and these values are consistent those
previous estim ates.

To assign likelhood factors t© the links, the ideal Iink
values (1, 0) are perturbed w ith noise according t© the
form ulabelow :

g*n+v

w here g is a num ber chosen random Iy from a sandard
nom al gaussian distdbution fmean=0, sdev=1); n is
the noise factorm ultiplier equivalent to ncreasing the
variance of the nom al distrbution); and v is the
orighal lkelihood valie O or 1). Sice this formula
occasionally produces a num ber outside the range from

zero t© one, our algorithm may repeatedly nvoke the
formula for a link untl it generates a number n this
range. The noise factorn thus m odels the level of label
am biguity n the site. H igher levels of am biguity lead to
more frequent backttacking, which may be mor
prom nent W eb search than m enu search.

Sin uktions
To further evaluate the m odel’s design decisions, we
com pare its perfom ance t© the W eb navigation results
of Larson and Czew Inski (1998). They studied users
navigating two-tered (16x32 and 32x16) and three-
tered Bx8x8) sie architectures that were othemw ise
com parable. Participants took significantly longer to
find items in the threetiered sie (58 seconds on

average) than the two-tdered sites 36 seconds for the
16x32 gite and 46 seconds forthe 32x16 site) .

Sin ulations of the O pportunistic Strategy

For our sim ulations using the opportunistic soategy,
sites w ere constructed as described above, except that
the noise was not applied to the bottom level, which
leads ®© the term nal pages. This reflects the fact the
participants In Larson & Czew nski could clearly tell
w hether the 1ink s Jabelm atched the text of the targeted
iEem .

For each sie archiecture Bx8x8, 16x32, and 32x16)
10,000 sinulatons were nin using the follow Ing tine
costs: 250m s for evaluating a link, 500m s for selecting
a lnk, and 500ms for =tum to the previous page
foressing the back button). Follow ing Larson and
Czew nski (1998), any mmn lasting mor than 300
secondsw as coded as lasting 300 seconds.

Figure 3 chows the calculated mean times of the
sim ulation mns. Not surprisngly, the tim e reeded t
find a tawet ncreased wih link ambyguity. W hat is
more Interesting is how link ambiguity hteracts w ih
site sructure . The 8x8x8 architecture produced slightly
faster tines at low levels of noise but subsantially
slow er tim es atnoise levels above 0 2. A tthese higher
noise levels the results are consistent w ith the hum an
users. At noise levels of 04 and higher, simulated
tines were faster w ith the 16x32 architecture than the
32x16 architecture. This difference was also noted In
the study with human users, albeit not reported as
satdstcally significant.

Ata noise levelof 0 4, the sim ulation results closely
match the human results I absolite tems: 62s



(compare t© 58s for hum ans) for 8x8x8, 43s (com pare
to 46s) for 32x16, and 35s (compare to 36s). Ikappears
thatthe 0 4 serves a good param eterestin ate describing
the am ount of label ambiguity in the sites used by
Larson and C zerw Ingki.

Ferformance as a function of link ambiguity a nd architecture
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Figure 3 Sin ulating threshold and opportunistic
Strategies

Im pactofTin e Costs

W hile changhg the tine costs (50ms for Ilnk
evaluations and 500m s for link selection and retuming
to the previous page) will affect absolute sim ulation
tm es, it is less clear if different tim e costs w ill change
which architecture produces the fastest times. For
exam ple, one may wonder if the 8x8x8 archiectires
would sdll prwoduce the slowest tines if the Iink
selection cost were double, which may occur for a
slow er mtemet connection .

To explore the Inpact of tin e costs, we ook at the
num ber of 1link evaluations, lnk selections and page
retums. If ndependent counts of these actions conelate
w ith the aggregate sinulation time, we conclude that
varylng the tine costs have m Inimal Inpact on the
rlative perform ance of the different architectures. For
exam plk, if the 8x8x8 requires more evaluations, m ore
selections and m ore retumes than the otherarchitectures,
we know that 8x8x8 w ill produce slow er search times
regardless of the tim e costs.

Looking at the num ber of evaluations, selections and
reums, we see that the 8x8x8 archiecture required
more of each action (173, 17, and 19 respectively) at
the 04 noise Jevel than the 16x32 (125, 3, and 5) and
the 32x16 (134, 6, and 8). Further experinentation
reveals that this relationship holds across all but the
low est noise levels 02 and less). W e conclude that
changing the tim e costs have no effect on the =lative
com parisons provided that the noise levelisatleast0 3.

In pactofM em ory C apacity

R ecall that the opportunistic strategy requires the m odel
o store and retrdeve threshold values so that the
previous threshold can be reinstated upon retuming t a
parent page. So far, our sim ulations have assum ed that
only one threshold value can be restored. Thus, if the

model rrtumed t the top level of a three-tder
architecture, it would no longer be able to recall the

previous threshold and would sinply leave the
threshold at its current state.

Because this lin ited m em ory capacity only hinders
perfom ance In a three-tiered site Eg. 8x8x8), we m@n
sin ulations w here the m em ory capacity could hold the
additional threshold value = that the previous value
could be remstated when navigating through a three-
tered site. Figure 4 show s the results using the sam e
scale as Figure 3.W hile we see that the extra mem ory
capacity Improves the performeance of the 8x8x8
architecture, its navigation is stdll slow er than the two-

FPerformance as a function of link ambiguity and architecture
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Figure 4 R esults using a Jargerm em ory capacity

D iscussion
W e have shown thata sinple modelofaW eb usercan
provide an excellent account of user behavior and
reveal In portant factors undertying W eb usage. The
m odel suggests that link am biguity hteracts w ith the
depth of Imfomation archiecture to determ ne site
navigation tine. As link ambiguity decreases, better
perform ance is found fiom architectures wih deep
stuctures that m nin ize the num ber of links searched.
As link ambiguity Increases, the model shows
perform ance degradations for architectures w ith deeper
stuctures. The sam e pattem is chamacteristic of hum an
users. How ever, the preference for shallow hierarchies
is cbserved only with sufficient am biguity n the link



labels and w ith no am biguity at the bottom level. Thus,
the results of Larson and Czermw nski (1998) may not
generalize to large numbers of real W eb pages w ith
am biguity atall levels.

As forW eb search strategies, com bining threshold -
based selection with opportunistic search strategies
produced simulated times that arr very close to
cbserved times for 04 noise level. This alwo
corregponds to the behaviorof severalusers searching a
departm ent store sie n the pilot study m entioned
above.W e recognize the need for converging m ethods
to Idependently determ me lnk ambiguity and are
exploring theoretical and empircal methods of
estim ating actualvalues.

To make tme predictons, our model assumes
plusible time costs for Ink evaluation, lnk selection
and retuming to the previous page.By noting the actual
counts for these operations, our simulations help us
understand w hat happens w hen the 1ink selection tim e
is significantly longer, as w ould be the case fora slow
ntemet connection. W e found, how ever, that the tine
costs have no effect on the wlative com parisons
provided that the noise factor is at least 03. This
suggests that a slow er Intemet connection does not
Inpact the rlative advantage of challow architectures
when significant Iink am biguity is present, at least for
the case w here no noise ispresentat the bottom level.

Our sin ulations also aid ourunderstanding of how
human memory inpacts effective navigation.
Ihcreasing the model’s memory capacity inproved
perform ance for the deep (8x8x8) structure but left the
other two archiectures largely unaffected. This
suggests thatm em ory ism ore useful in keeping track of
gite architecture than in searching w ithin a page. STnce
searching a page is faciliated by visual cues €eg.,
changes In the color of previously selected links) users
can avoid reliance on m em ory . V isual cues are typically
notpresent to rem nd users of the nam es and locations
of previous lnks. The interaction of stucture w ih
m em ory capacity indicates further that sim ple heuristics
for mepresenting capacity are msufficient to capture
memory phenomena of inporance. Istead, it is
necessary to exam Ine how the stucture of mfomm ation
sites provides aids t© m em ory. O ur analysis contrasts
w ith previous advice suggesting that the number of
Inks per page should be Im ited t© 10 Rosenfeld &
M orville, 1998) (=ee Lareon & Czew inski, 1998, for a
discussion based on experin entalresults).

W e have shown that a sinple model of a user
nteracting wih a sinplified W eb site can rweveal
n portant factors that affect usability and can support
the Investigation of the nteractions between those
factors across a wide range of conditions. W hat we
have presented is not a com prehensive m odelof W eb
navigation. No attempt is made to account for how
people stan a page, or evaluate 1ink labels or in ages.

By abstracting these processes, and representing only
their fimctionality, the m odel focuses on understanding
how mfomation arhiecture affects the navigation
process. A s an approxin ation of user navigation, the
m odel can account for arange of hum an behaviors by
varyng likelihood factors in its site representations.W e
have schown that the model provides a good
approxin ation of the behavior of the common modal)
user. By varyIng param eters it should be possble t©
extend the m odel t account foraltemate stategies.
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