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Abstract

This paper adds some theory to the growing literature
of semantic space models. We motivate semantic space
models from the perspective of distributional linguistics
and show how an explicit mathematical formulation can
provide a better understanding of existing models and
suggest changes and improvements. In addition to pro-
viding a theoretical framework for current models, we
consider the implications of statistical aspects of language
data that have not been addressed in the psychological
modeling literature. Statistical approaches to language
must deal principally with count data, and this data will
typically have a highly skewed frequency distribution due
to Zipf’s law. We consider the consequences of these
facts for the construction of semantic space models, and
present methods for removing frequency biases from se-
mantic space models.

Introduction
There is a growing literature on the empirical adequacy
of semantic space models across a wide range of sub-
ject domains (Burgess et al., 1998; Landauer et al., 1998;
Foltz et al., 1998; McDonald and Lowe, 1998; Lowe
and McDonald, 2000). However, semantic space mod-
els are typically structured and parameterized differently
by each researcher. Levy and Bullinaria (2000) have ex-
plored the implications of parameter changes empirically
by running multiple simulations, but there has up until
now been no work that places semantic space models
in an overarching theoretical framework; consequently
there there are few statements of how semantic spaces
ought to be structured in the light of their intended pur-
pose.

In this paper we attempt to develop a theoretical
framework for semantic space models by synthesizing
theoretical analyses from vector space information re-
trieval and categorical data analysis with new basic re-
search.

The structure of the paper is as follows. The next sec-
tion brie¤y motivates semantic space models using ideas
from distributional linguistics. We then review Zipf’s
law and its consequences the distributional character of
linguistic data. The £nal section presents a formal de£-
nition of semantic space models and considers what ef-
fects different choices of component have on the result-
ing models.

Motivating Semantic Space
Firth (1968) observed that “you shall know a word by
the company it keeps”. If we interpret company as lex-
ical company, the words that occur near to it in text or
speech, then two related claims are possible. The £rst
is unexceptional: we come to know about the syntactic
character of a word by examining the other words that
may and may not occur around it in text. Syntactic theory
then postulates latent variables e.g. parts of speech and
branching structure, that control the distributional prop-
erties of words and restrictions on their contexts of occur-
rence. The second claim is that we come to know about
the semantic character of a word by examining the other
words that may and may not occur around it in text.

The intuition for this distributional characterization of
semantics is that whatever makes words similar or dis-
similar in meaning, it must show up distributionally, in
the lexical company of the word. Otherwise the suppos-
edly semantic difference is not available to hearers and it
is not easy to see how it may be learned.

If words are similar to the extent that they occur in
the similar contexts then we may de£ne a statistical re-
placement test (Finch, 1993) which tests the meaning-
fulness of the result of switching one word for another
in a sentence. When a corpus of meaningful sentences is
available the test may be reversed (Lowe, 2000a), and un-
der a suitable representation of lexical context, we may
hold each word constant and estimate its typical sur-
rounding context. A semantic space model is a way of
representing similarity of typical context in a Euclidean
space with axes determined by local word co-occurrence
counts. Counting the co-occurrence of a target word with
a £xed set of D other words makes it possible to position
the target in a space of dimension D. A target’s position
with respect to other words then expresses similarity of
lexical context. Since the basic notion from distributional
linguistics is ‘intersubstitutability in context’, a semantic
space model is effective to the extent it realizes this idea
accurately.

Zipf’s Law
The frequency of a word is (approximately) proportional
to the reciprocal of its rank in a frequency list (Zipf,
1949; Mandelbrot, 1954). This is Zipf’s Law. Zipf’s
law ensures dramatically skewed distributions for almost



all statistics applied to language; the power scaling en-
sures that the majority of words occur very infrequently,
creating a severe sparse data problem, and that the top
few most frequent words constitute the majority of all to-
kens. For example, the 10 most frequent word stems, or
lemmas, in the 100M word British National Corpus are
‘the’, ‘be’, ‘of’, ‘and’, ‘to’, ‘a’, ‘in’, ‘have’, ‘that’ and
‘it’, constituting slightly over one quarter of all tokens
in the corpus (25974687 / 99985962 0.26). Also the
most frequent words of English are grammatical functors
or closed class words (Cann, 1996), which although vi-
tal to syntax, are typically uninformative with respect to
word meaning. Much of the next sections will be devoted
to dealing with the distributional effects of Zipf’s law.

To introduce some notation, semantic space mod-
els typically represent the distributional context of each
word t in terms of a set of representative ‘context’ words
b1 . . .bD. t’s distributional pro£le is then represented by
a vector of co-occurrences v where vi is a function of
f W (bi, t), the number of times bi occurs in a window W
words either side of t in a corpus of N words. For future
reference f (t) is the occurrence frequency of t in the cor-
pus, p(t) is the probability of t, often estimated by t N,
and pW (bi, t) is the probability of seeing bi and t together
in a window of size W .

Semantic Space
A semantic space model is method of assigning each
word in a language to a point in a real £nite dimensional
vector space. Formally it is a quadruple A,B,S,M :
B is a set b1...D of basis elements that determine the

dimensionality D of the space and the interpretation
of each dimension. B is often a set of words (Lund
et al., 1995, e.g.) although lemmas (Lowe and McDon-
ald, 2000), encyclopedia articles (Landauer and Dumais,
1997) and whole documents have been used.
A speci£es the functional form of the mapping

from co-occurrence frequencies between particular ba-
sis elements and each word in the language so
that each word is represented by a vector v =
A(b1, t), A(b2, t), . . . ,A(bD, t) . A may be the identity

function.
S is a similarity measure that maps pairs of vectors

onto a continuous valued quantity that represents con-
textual similarity.
M, is a transformation that takes one semantic space

and maps it onto another, for example by reducing its
dimensionality. Various choices for these elements are
possible, and lead to rather different spaces. M may also
be an ‘identity’ mapping that does not change the space.
In the following sections we consider the implications of
different choices of A,B,S and M.

A : Lexical Association Function
Zipf’s law suggest that using vectors of co-occurrence
counts directly may not be a good choice when construct-
ing a semantic space. To see why, consider two words
t1 and b with probabilities p(t1) and p(b). If t1 and b
have no semantic relation to each other, then they will be

distributionally related to one another only through their
syntactic properties e.g. by the fact that they are both
nouns. For simplicity we ignore any residual syntactic
dependence and model their empirical frequencies f (t1)
and f (b) as independent binomially distributed random
variables

f (t1) B(p(t1),N)
f (b) B(p(b),N).

In this idealization t1 and b are perfectly distributionally
independent so f W (b, ti) = W N p(b, t1) = W N p(t1)p(b)
(this is just the expected co-occurrence frequency
summed over each possible position in the window).

The fact that the expected co-occurrence count under
independence is linear in the probability of t1 leads to
a problem in any model that sets A((b, ti) = f W (b, ti),
e.g. the Hyperspace Analogue to Language (HAL; Lund
et al., 1995). Even if t1 and t2 are unrelated, if p(t1)
p(t2) then their vectors will contain elements with simi-
lar magnitudes. This implies that any similarity measure
applied to the vectors will judge them to be similar. Con-
versely if they are related but p(t1) p(t2) then their
vectors will contain elements with widely differing mag-
nitudes, simply due to their differing occurrence proba-
bility. Zipf’s Law threatens that any difference in distri-
butional pro£le available in f W (b, ti) may be swamped
by the effect of a difference in occurrence probability.

The upshot for models such as the HAL that use vec-
tors of counts that are not corrected for chance is that dis-
tances will have a frequency bias. That is, proximity on
semantic space will be partly due to distributional simi-
larity, and partly due to relative frequency; the larger the
difference in occurrence probability, the larger associa-
tion a context element must have to affect the similarity
function.

Since it is unlikely that semantic similarity depends
on relative frequency, we have a theoretical reason not
to use raw co-occurrence counts as a lexical association
function.

Researchers in information retrieval have also noted
problems with raw co-occurrence counts and use various
weighting schemes to counteract them. Latent Seman-
tic Analysis (LSA; Landauer and Dumais, 1997; Re-
hder et al., 1997), a semantic space model derived from
information retrieval research uses an entropy-weighted
function: A(b, t) ∝ log( f W (b, t) 1). The logged co-
occurrence count is then divided by the entropy of the
distribution of b over each documents. If b is evenly dis-
tributed across documents then it is probably not infor-
mative about any particular document. In contrast if it
occurs in some but not others it may be more informative
about their content.

LSA’s lexical association function is designed to allow
arbitrarily many basis elements into the similarity calcu-
lation by weighting them appropriately. However neither
logging nor dividing by entropy is guaranteed to reverse
the effects of chance co-occurrence since this is never
explicitly estimated.



Target Non-target

Context f W (b, t) f W (b, t)
Non-context f W ( b, t) f W ( b, t)

Table 1: Co-occurrence frequency within a window of
target, context and all other words. t represents a word
that is not t.

Lowe and McDonald (2000) used a log-odds-ratio
measure to explicitly factor out chance co-occurrences.
The empirical counts necessary for computing the log-
odds-ratio are shown in Table 1. t represents any word
that is not t, b represents a word that is not the con-
text word b and f W ( b, t) is the number of times a word
that is not the context word occurs among the W words
surrounding t.

Computing the cell counts is straightforward because
there exists a very close approximation that is a function
only of f W (b, t) itself, f (t), f (b), W , and N:

f W (b, t) = W f (b) f W (b, t)

f W ( b, t) = W f (t) f W (b, t)

f W ( b, t) = WN ( f W (b, t) f W ( b, t)

f W (b, t)).

To derive these expressions consider the limiting situa-
tion where W = 1 and f (b, t) is the number of times
the bigram b, t occurs. Since by de£nition f (b) =
f (b, t) f (b, t), then f (b, t) = f (b) f (b, t), and the
same reasoning applies to f ( b, t). Similarly the number
of elements in the table, f (b) f ( b), must be the num-
ber of bigrams in the corpus. For a large corpus this is
essentially N, the number of words in the corpus. There-
fore since f ( b, t) is the only cell undetermined it is
obtained by subtracting the sum of the other cells from
N. The W factors appear on quantities other than the co-
occurrence count when the window size is more than one
because only f W ( b, t) already takes the window size
into account1.

We obtain probabilities from Table 1 by dividing
each cell count by WN. Then the odds of seeing t
rather than some other word when b is present are
pW (b, t) pW (b, t), and the odds of seeing t in the ab-
sence of b is pW ( b, t) pW ( b, t). Therefore if the
presence of b increases the probability of seeing t then
the odds ratio (Agresti, 1990)

θ(b, t) =
pW (b, t) pW (b, t)

pW ( b, t) pW ( b, t)

=
pW (b, t) pW ( b, t)
pW (b, t) pW ( b, t)

1The derivation is reported elsewhere (Lowe, 2000a).

is greater than 1. When the presence of b makes no dif-
ference to the probability of seeing t then θ = 1 and we
can conclude that b and t are distributionally indepen-
dent. Finally, if θ < 1 the presence of t makes seeing b
less probable.

We can estimate the odds ratio from Table 1:

θ̂(b, t) =
f W (b, t) f W ( b, t)
f W (b, t) f W ( b, t)

.

Where the WN factors have canceled. This measure is
often logged so that then the magnitude of log θ̂(b, t)
can be interpreted as a direct measure of the level of as-
sociative strength between t and b, with the effects of
chance co-occurrence factored out. Positive values indi-
cate greater than chance positive association.

Lexical Association in Lexicography
The most informative words for t are those that occur
only in its context, e.g. t=‘sealed’ and b=‘hermetically’.
Instances of word pairs like this are concordances, or
collocations, and are of interest to lexicographers. Con-
sequently, the log-odds-ratio also provides a method of
£nding collocations between words. Previous work in
lexicography has used pointwise mutual information,
log-likelihood ratios, and T-tests. Since by symmetry
these alternative measures can also be lexical association
functions, we review them brie¤y below.

Mutual Information The pointwise mutual informa-
tion I(b, t) between t and b Church and Hanks (1990) is

I(b, t) = log
pW (b, t)

W p(b)p(t)

and can be also be estimated using the frequencies in
Table 1. I(b, t) measures how much information an
occurrence of b contains about t. If b occurs with t
no more often than would be expected by chance then
pW (b, t) = W p(b)p(t) and I(b, t) = 0, so the mutual in-
formation measure effectively factors out random co-
occurrences. However, if t and b always occur together
then pW (b, t) = p(b) and I(b, t) = log 1 p(t), so the less
frequent b and t are the larger their association is. In
contrast, changing the marginal probabilities of t or b is
equivalent to adding a constant value to rows or columns
of the contingency tables above (Bishop et al., 1975). It
is easy to con£rm that this change makes no difference
to θ.

The G-score Dunning (1993) uses a log-likelihood ra-
tio statistic (Agresti, 1990), which he calls the G-score,
to discover collocations in text. This method compares
two models of the relationship between t and b. In the
£rst model (association) assumes that p(b t) = p(b

t), whereas the second model (no association) assumes
that p(b t) = p(b t). The statistic is the ratio of
the maximized log-likelihoods for each model’s parame-
ters. This measure takes chance co-occurrence into ac-
count because it implicitly compares the observed co-



occurrence frequencies with the co-occurrence frequen-
cies that would be expected by chance. For example,
the expected value of the top left cell in Table 1 is
W f (t) f (b) N under (no association) but fW (b, t) under
(association). Empirically using log-likelihood ratios as
vector elements in a semantic space generates similar
results to using log-odds-ratios. This is to be expected
since both measures take chance co-occurrences into ac-
count. Alternative measures include the χ2 statistic and
Fisher’s exact test. However, Dunning shows that the dis-
tributional properties of the G-score are superior under
normal lexicographic conditions, and the hypergeomet-
ric probabilities required in Fisher’s test are intractable
to compute for contingency tables containing very large
counts (Agresti, 1990). For example, f W ( b t) will
typically exceed the number of words in the corpus.

Considering the lexicographic task emphasizes the
‘second order’ nature of semantic space measures of sim-
ilarity: they re¤ect regularities across multiple ‘£rst or-
der’ association measures, one for each vector element.
This interpretation is taken up again in discussing appro-
priate similarity functions below.

B : Choosing a Basis

When choosing basis elements for a semantic space there
is a trade-off between choosing words that are represen-
tative of sentence content, but may not give reliable count
statistics due to their low frequency, and choosing high
frequency words that provide reliable statistics but ap-
pear in almost every sentence of the language. The trade-
off is an instance of the bias-variance dilemma in statis-
tical learning theory (Geman et al., 1992).

The Bias-Variance Dilemma Every statistical model
is able to represent a subset of the class of possible hy-
potheses about data. The range of hypotheses is typically
controlled by the model’s structure and by a set of ad-
justable parameters. More ¤exible models can represent
more hypotheses and are said to have less bias. In con-
trast, a very ¤exible model will require a large amount
of data to determine accurate values for its parameters.
When there is not enough data compared to the number
of parameters, parameter estimates may be optimal for
the particular data set the model was trained on, but will
fail to generalize to new data. A model that ‘over£ts’ in
this way is said to have high variance. Model variance
can be decreased at the cost of adding bias e.g. by con-
straining or removing parameters. Bias can be decreased
by making the model more ¤exible, at the cost of needing
more data to cope with increased variance.

In a semantic space the vector elements, A(b, t) are pa-
rameters that estimate the amount of association between
b and t on the basis of observed data fW (b, t). When
choosing the basis elements b1 . . .bD, we can de£ne a
highly biased model by choosing only very high fre-
quency words. Co-occurrence counts for high frequency
words are very reliable because high frequency words
appear in nearly all sentences. This biased model will
have very low variance; each A(b, t) is a well-determined

parameter because f W (b, t) is large enough to provide
a reliable estimate of pW (b, t). However, every vector
will be similar because all words in the language tend
to occur with the high frequency words in the basis, ir-
respective of their distributional pro£le. Consequently,
distances between words will be extremely similar and
vectors in the biased model will fail to re¤ect important
distributional differences.

Alternatively, if only low frequency content words
are chosen as basis elements then vectors will be more
highly informative and distances in the space will be able
to re¤ect subtle distributional similarities. This model
will have high variance because the co-occurrence counts
needed to determine A(b, t) are unreliable. Variance can
always be decreased by providing more data, but Zipf’s
law suggests a power relation between the amount of new
text that would need to be found and the reduction in co-
occurrence count variability.

In theory the fullest possible distributional pro£le for a
word would include all words in the language, generating
an infeasibly large vector. In practice this is not possible
and some subset of words must be chosen.

The solution for LSA is to use as many words as possi-
ble with appropriate weighting for each vector element,
and then use M to compress the original vectors into a
smaller space with dimensions that are linear combina-
tions of the original ones.

The Column Variance Method For HAL, elements of
B are chosen by compiling a 70,000 70,000 matrix of
word co-occurrences and discarding the columns of low-
est variance2. Consistent with Zipf’s law, column vari-
ance decreases sharply with the frequency of the word
corresponding to the column (Lund et al., 1995). Then
for each set of experimental stimuli, Burgess et al. com-
pute variances over each vector element and retain only
the most variant. We can refer to this as the column vari-
ance method of basis element choice.

The method is dif£cult to analyze because the basis is
recomputed for each experiment, but we can show that
it has a frequency bias. If b and t are unrelated then we
can, again, model them as Binomially distributed. In the
simple case where W = 1, the variance of the frequency
count under independence is

Var f W (b, t) = N p(t)p(b)(1 p(t)p(b))

= N p(t)p(b) N p(t)2 p(b)2.

so the expected variance of f W (b, t) is quadratic in p(b).
The expected variance of the elements of a column of
such counts is the same as the variance of the column
sum i.e. the sum of the individual variances. Figure 1
shows the expected variances for a 14 14 table of co-
occurrence counts for perfectly unrelated words with oc-
currence probabilities ranging from 0.5 to 0.0667. Even
completely unrelated words will show distinct structure

2Co-occurrences are also weighted by distance, but this
does not affect the following argument.



0 5 10 15
0

0.5

1

1.5

2

2.5

Figure 1: An example of column variance method. Ex-
pected column means based on expected co-occurrence
counts between each of 14 hypothetical unrelated words.
To estimate means and variances for a corpus of N words,
multiply all quantities by N. Error bars represent ex-
pected column variances.

in their column variances, but this is entirely due to their
baseline frequencies.

There are two possible causes for a high column vari-
ance. The £rst cause is simple frequency as shown in
Figure 1. The second reason is that the words are in fact
distributionally related. Then unexpectedly large vari-
ance can be a sign that the Binomial assumption has
failed, and that two words are in fact related. However
the size of the variance increase necessary is variable. In
the column variance method, for a word that is distribu-
tionally related to some of the experimental materials to
make it into the £nal basis set it must be strongly associ-
ated enough that its observed column variance moves it
into the window of very high variance words at the up-
per end of the frequency table. In other words, it is not
enough to be twice as variant as would be expected by
chance, a word must be as many times more variant as
it takes to have a variance that is absolutely high; lower
frequency words have to work harder and unrelated but
high frequency words will get chosen anyway.

This analysis of the column variance method predicts
that, in the absence of strong association, the variance of
a column corresponding to some candidate element will
correlate strongly with that element’s frequency.

This was tested by taking candidate lemmas of fre-
quency rank 100 to 600 in the BNC, and experimen-
tal stimuli from McKoon and Ratcliff’s graded priming
study (see Lowe and McDonald, 2000). The analysis
predicts that the levels of genuine association (corrected
for frequency) between these candidates and the experi-
mental stimuli will be be low because the words are so
frequent that they provide little information about con-
text. In fact for this data log-odds-ratios are mildly neg-
atively correlated with column variance r=-.317 p<.001.
In contrast candidate frequencies strongly positively cor-
related with column variance for co-occurrence counts,
r=.8553 p<.001.

S : Similarity Measure
Two popular similarity measures are Euclidean distance
and the cosine. For two vectors v and w in a D-
dimensional basis, the squared Euclidean distance v
w 2 is simply related to the cosine ρvw of the angle be-
tween them:

v w 2 =
D

∑
i=1

(vi wi)2

= v 2 w 2 2
vw

v w

= v 2 w 2 2ρvw

where w 2= ∑D
i w2

i is a squared vector length. From
this equation it can be seen that v w 2∝ ρvw only
when v and w are standardized in length. When A(b, t) =
f W (b, t) then vector element may have widely differing
lengths depending on p(b) and p(t).

One advantage of the cosine is that it ranges between
-1 and 1, and so removes any arbitrary scaling induced
by the range of A and the number of elements in B. When
A is simple co-occurrence the cosine is also less sensi-
tive than Euclidean distance to extreme values induced
by widely differing basis element frequencies, although
a good choice of A should avoid this problem.

The interpretation of similarity as a ‘second order’
regularity can motivate yet another plausible similarity
measure. We may take the correlation coef£cient (Pear-
son’s r) as a measure of how well the elements of each
word’s vector match. The only difference between this
and the cosine measure is that the mean of each vec-
tor is included in the similarity measure. This will not
only offset the effect of different vector element magni-
tudes, but also place all calculations in a regular statis-
tical framework. The statistical implications of taking
correlation coef£cients over log-odds-ratios remain to be
worked out. In addition, all the measures described here
will bene£t from a characterization of their properties in
small samples. This is future work.

M : Model
A semantic space is fully functional when a B,A and S
have been speci£ed. However, it is possible to build
a more structured mathematical or statistical model. In
LSA the model consists of a projecting vectors into a lin-
ear subspace of B using singular value decomposition.
This is equivalent to selecting the k orthogonal axes that
account for most variance of words in semantic space.
Each word is then projected into the the subspace, and
point is then ‘re-in¤ated’ back into the full dimensional-
ity and cosine measures applied. Cosines can be taken
in the linear subspace without subsequent re-in¤ation as
suggested by Berry et al. (1995).

The theoretically important point about LSA’s dimen-
sionality reduction is that it is a simple instance of in-
ferring latent structure in distributional data. Parts of
speech, and grammatical structures are also examples of



latent structure in the sense that they are in-principle un-
observable aspects of words that re¤ect their distribu-
tional properties. One important direction for seman-
tic space research is to £nd an appropriate type of la-
tent structure to explain the distributional regularities that
are assumed to underly semantic similarity. Biologi-
cally motivated models using topographic mapping, and
strictly random mappings have also been investigated
(Lowe, 2000a,b).

Conclusion
In this paper we have put forward some theory for se-
mantic space models. In addition to presenting a frame-
work for thinking about current semantic space mod-
els we have examined the implications of various de-
sign choices, emphasized the importance of avoiding fre-
quency biases, and presented methods for doing so. We
have also connected semantic space theory to lexico-
graphic methods and to standard problems of bias and
variance discussed in the statistical literature.
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