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Abstract

Rescorla (in press) investigated the change in associative
strength undergone by cues A and B as a result of rein-
forcement or nonreinforcement of an AB compound. Many
leading theories of associative learning predict that if A
and B are equally salient then the associative change expe-
rienced by each should be the same regardless of their asso-
ciative strength preceding AB trials. Rescorla explored
this prediction for a compound composed of an excitatory
A and an inhibitory B, using rats and pigeons as subjects.
We repeated Rescorla’s experiment using human subjects
and a causal judgment task, and obtained diametrically op-
posite results to those of Rescorla’s earlier study. The im-
plications of this finding are discussed with reference to a
number of influential theories of associative learning.

Introduction
It has long been recognised that stimuli presented in com-
pound can, and will, interact and compete for associative
strength. This is powerfully demonstrated in the phenome-
non of blocking (Kamin, 1969). This refers to the finding
that the gain in excitatory strength accruing to a conditioned
stimulus (CS), B, following reinforcement (+) of an AB
compound is much reduced if cue A has previously been
trained as being a good predictor of that outcome (uncondi-
tioned stimulus, US). Learning does not simply progress
with each cue independently. Instead the two cues seem to
compete for a limited amount of associative strength. Such
demonstrations of cue competition provided the motivation
for the development of models that can deal with the issue of
predictive redundancy in associative learning (e.g. Rescorla
& Wagner, 1972; Mackintosh, 1975; Pearce, 1987).

A common feature of these models is the idea that the
magnitude of associative change depends in some way on the
discrepancy (or error) between the current associative
strength of the presented cues and the strength which the
outcome (unconditioned stimulus, US) following these cues
can support. Consider, for instance, the Rescorla-Wagner
(1972) model (R-W), perhaps the most influential of all of
these “error-correcting” theories:

( )VV USU SAA Σ−=∆ λβα (1)

where ∆VA is the change in associative strength of cue A,
αA and βUS are rate parameters relating to the salience of cue
A and the US respectively, λUS is the asymptote of condi-
tioning supportable by that US, and ΣV is the summed as-
sociative strength of all cues present on a trial. Hence R-W
states that the error governing associative change for any cue
on a trial is based on the combined associative strength of

all cues present on that trial. This is essential to R-W’s ex-
planation of blocking. On A+ trials, VA will increase, with
A coming to predict the US. On AB+ trials, the error term
for cue B (and also for A) will be (λ-{VA+VB}). But of
course as a result of A+ training VA will already be high,
and so the error term will be correspondingly small, such
that any increase in VB will be only very small. Thus the
R-W explanation of blocking crucially hinges on the idea
that, when determining the associative change undergone by
B, the associative strength of other cues present on the trial
(A) is also considered.

This use of a common error term governing associative
change for all stimuli on a trial has important consequences.
Rescorla (in press) noted that, in the absence of additional
assumptions, it predicts that equally salient stimuli pre-
sented together on a trial will undergo equal associative
changes. This prediction holds true regardless of the associa-
tive history of the cues in question.

In a recent series of experiments, Rescorla (in press) in-
vestigated this prediction in rats and pigeons (using maga-
zine approach conditioning and autoshaping procedures re-
spectively). He looked at the particular instance of an AB
compound composed of an excitatory A and an inhibitory B.
Specifically, he was interested in the associative change un-
dergone by A and B as a result of either reinforcement or
nonreinforcement of the AB compound. If we assume that A
and B are of equal salience (ensured by counterbalancing)
then, as a result of using a common error term, R-W is con-
strained to predict that both A and B will show equal asso-
ciative change following either AB+ or AB- trials. Consider,
for example, the AB+ condition. If A and B are equally sali-
ent, then αA=αB. Since both are presented with the same
US, β will also be equal when calculating ∆VA and ∆VB

according to equation (1). And finally, the error term for
both A and B will be (λ-{VA+VB}). Hence, given that all
the terms in the calculation for ∆VA and ∆VB are identical,
Rescorla-Wagner must predict that on AB+ trials,
∆VA=∆VB. This prediction of equal associative change
holds true despite the fact that A (an excitor) and B (an in-
hibitor) begin these trials with very different associative
strengths (VA > 0, VB < 0).

The problem with investigations such as this is one of
how to assess the magnitude of associative change for two
stimuli that differ in their “baseline” associative strength. It
would be unwise to make any strong assumptions with re-
gard to mappings between associative strength and measur-
able performance, and yet without such mappings we cannot
be sure that two equal-sized changes in performance at differ-
ent points on the performance scale represent equal-sized
changes in associative strength.



Rescorla suggested an elegant way of avoiding this prob-
lem, by comparing performance to A and B when they were
embedded in compounds designed to ensure comparable over-
all levels of performance. We adopt this technique in our
experimental design (Table 1). Consider the Compound Re-
inforcement (CR) condition. A and C are initially trained as
equivalent excitors, while B and D are trained as equivalent
inhibitors. So following Stage 1, compounds AD and BC
should have equal strengths, as each contains one of two
equal excitors and one of two equal inhibitors. We then rein-
force the AB compound. If this results in equal changes to
the associative strengths of A and B (as predicted by R-W),
then the AD and BC compounds should remain equal after
Stage 2 (as each starts at the same level and receives the
same change). If instead the strength of A increases more
than that of B, then responding to AD will be greater than to
BC. Conversely, if the strength of the inhibitory B increases
more than that of the excitatory A, then BC will give rise to
more conditioned responding than AD. A similar argument
can be applied to the Compound Nonreinforcement (CNR)
condition: if FG- trials cause a greater decrement in VF than
VG then we expect the FI compound to be rated lower than
GH: if VG decreases more than VF we expect the opposite.

Using this kind of logic, the results of Rescorla’s experi-
ments indicated that reinforcement of AB led to a greater
increase in the associative strength of the inhibitory B than
the excitatory A, while nonreinforcement of AB led to
greater associative loss in the excitatory A than the inhibi-
tory B. Rescorla (2001) carried out a similar investigation,
this time with an AB compound consisting of an excitatory
A and a neutral B. Again, AB+ trials led to a greater increase
in VB than VA, whereas nonreinforcement gave a greater dec-
rement in VA than VB. This indicated that the previous result
was not simply due to some special property of conditioned
inhibitors. Instead it seems that initial associative strength
is an important factor in determining the distribution of as-
sociative change among the elements of a compound. This,
of course, runs contrary to the predictions of R-W.

This prediction of equal change does not apply only to
elemental theories such as R-W. Consider Pearce’s (1987)
configural model. This model proposes that a compound
stimulus is best viewed as a unitary event that is separate
from its elements, but able to generalise to them. Whereas
according to an elemental model, an AB compound is de-
composed into separate A and B elements, in a configural

model it is represented as a single “AB” configuration. Gen-
eralised responding to other stimuli (e.g. A alone or B alone)
occurs to the extent that these stimuli are similar to previ-
ously experienced configurations.

So on AB+ trials in Stage 2 of the CR condition, a con-
figural model such as Pearce’s learns an association between
an AB configural unit and the US. Assuming that A and B
are equally salient, this excitatory learning will generalise
equally to each of them (they each have the same degree of
similarity to AB), and so the model is constrained to predict
equal associative change for A and B as a result of AB+ tri-
als. Again no reference is made to the associative history of
the cues. A similar story applies to the CNR condition: any
change in association from an FG configural unit to the US
will generalise equally to F and G.

Dickinson, Shanks & Evenden (1984) noted many simi-
larities between Pavlovian conditioning in animals and the
acquisition of causal judgments in human subjects. How-
ever, Le Pelley & McLaren (in press) demonstrated that not
all phenomena in the animal learning field have analogues in
studies of human causal learning. Given the importance of
the previously described findings in elucidating the mecha-
nisms underlying associative change, we aimed to repeat
Rescorla’s (in press) experiment using a causal judgment
task with human subjects. This is of particular interest to us
as, if we were to replicate Rescorla’s findings in human sub-
jects, it would invalidate the APECS model of associative
learning that we have developed in recent years (Le Pelley &
McLaren, in press; Le Pelley, Cutler & McLaren, 2000; see
also McLaren 1993, 1994).

APECS is a model of learning and memory, based on the
popular backpropagation algorithm (Rumelhart, Hinton &
Williams, 1986), but with a couple of important differences.
Firstly, APECS employs configural representation. Thus
each different mapping of input to output is represented by
its own hidden unit, which could equally well be termed
“configural units”. Secondly, APECS uses adaptive gener-
alisation coefficients to determine the amount of generalisa-
tion between similar input patterns. As a result, once the
weights appropriate to a mapping have developed, the learn-
ing in those weights can be protected against interference.
This is achieved by reducing the learning rate parameter for
the configural unit carrying that mapping. The effect is to
“freeze” the weights to and from a certain configural unit at
the value they hold immediately following experience of that
configuration. Crucially, this freezing of weights to and
from a certain configural unit occurs only if that configural
unit has a negative error value, i.e. if it is part of a mapping
that predicts an incorrect outcome for the current input.
APECS has different learning rate parameters for in-
put–hidden and bias–hidden connections. The former are fro-
zen to prevent interference; the latter remain high. Hence
extinction (suppression of inappropriate responses) is
achieved by an increase in the negative bias on the hidden
unit carrying the inappropriate mapping, rather than by re-
duction of weights (which would cause the original mapping
to be lost from the network). Given appropriate input cues,
the negative bias on the hidden unit can be overcome and the
original mapping retrieved. So bias acts to change the re-
trievability of previously learnt mappings, such that

Condition Stage 1 Stage 2 Test
A+ C+ AB+ AD

CR E+ CD? BC
BE- DE-

F+ H+ FG- FI
CNR J+ HI? GH

GJ- IJ-

KL+ MN+ K- M-
OP+ Q- Q- V+
R- S- W+ X+

Fillers

T- U-

Table 1. Experimental design.
+: outcome;  -: no outcome; ?: exposure trial.



APECS addresses both learning (in formation of weights)
and memory (in changes of retrievability).

Consider the processes at play in the CR condition, ac-
cording to APECS. During Stage 1, the network will learn
an excitatory connection from a representation of A to a
configural unit, and from the configural unit to the output.
Hence this configural unit comes to represent the A+ map-
ping. A different configural unit will be recruited to carry the
E+ mapping. On BE- trials, presentation of E will cause
positive activation to flow to the output via this E+ excita-
tory pathway. This positive activation is inappropriate on a
trial on which the US is not presented: as a result the output
unit will take on a negative error. This negative error will be
propagated back along the excitatory connection to the E+
configural unit. This configural unit will therefore take on a
negative error, as it is part of a mapping predicting an inap-
propriate outcome for the current input. This negative error
means that, on BE- trials, the weights to and from the E+
configural unit will be frozen, as stated above. Instead the
E+ configural unit will take on a negative bias to reduce
expression of this excitatory mapping on these nonreinforced
trials. In addition, excitatory associations will develop from
B and E to a new configural unit, representing the BE con-
figuration. This unit will develop an inhibitory association
to the output in order to further counter any positive activa-
tion flowing to the output via the E+ hidden unit. By a
similar argument, this BE- configural unit will develop
negative bias on E+ trials. Hence following Stage 1, the
situation for cues A, B and E is as shown in Figure 1 (this
also applies to cues C, D, F, G, H and I and J, all of which
have an equivalent partner in A, B or E following Stage 1).

What now happens on AB+ trials? The US will receive
some positive activation via the A+ mapping learnt in Stage
1. However, it will also receive some negative activation via
the BE- mapping (which can never be totally suppressed by
development of negative bias). As a result the US will not
be perfectly predicted on these trials, and yet is presented.
Therefore the output unit will have a positive error. How
can this error be reduced? Well, the positive error on the US
unit will be propagated back to the BE- configural unit. But
it is propagated along a negative connection, and so the BE-
unit will take on a negative error (again, it is part of a map-
ping predicting an incorrect output on this trial). Thus
weights to and from this unit are frozen. Extra negative bias
can still be applied to the unit to reduce the negative activa-
tion flowing to the output, though, and this will help to
reduce the output error. The positive output error will also
be propagated back to the A+ configural unit along the posi-
tive connection. Thus the A+ configural unit will have a

positive error. Both its weights and its bias are therefore free
to change: the connections from A input to A+ configural,
and from A+ configural to output, will increase. This too
will reduce the output error.

In our previous expositions of APECS, we have always
made the assumption that changes in weights occur faster
than changes in bias. Thus we assume that changes due to
learning take place faster than changes in memory, i.e. that
learning represents rapid acquisition, and memory represents
a more gradual decline in retrievability: this seems reason-
able. We saw above that on AB+ trials, the weights of the
A+ mapping are free to increase, whereas only the bias of
the BE- mapping may change to reduce the effective strength
of the inhibitory mapping. Therefore APECS is constrained
to predict that, on these AB+ trials, the associative strength
of the excitatory A will increase more than that of the in-
hibitory B. This is of course opposite to Rescorla’s result.

A similar argument holds for the CNR condition. On FG-
trials, the F+ hidden unit will have negative error (so only
its bias may change), while the JG- unit has positive error
(so that its weights and bias may both change). In this case
APECS must predict that, on FG- trials, the associative
strength of the inhibitory G will decrease more than that of
the excitatory F, again opposite to Rescorla’s result.

In summary, these results follow from the idea of adaptive
generalisation. AB+ training generalises more to A+ than it
does to BE- because AB and A predict the same outcome.
Similarly FG- learning generalises more to GJ- than to F+
as FG and GJ predict the same outcome (no US).

Rescorla noted a problem with his paradigm that could
cast doubt on the results obtained. AB compound presenta-
tion may result not only in development of A–US and
B–US associations, but also in development of within-
compound A–B associations. Consideration of these A–B
associations complicates any inference of unequal associative
change drawn from the results. Suppose A and B undergo
equal changes as a result of AB+ trials. The formation of an
A–B association might be expected to enhance responding to
the inhibitory B (as it has been paired with an excitor), and
reduce responding to the excitatory A (as it has been paired
with an inhibitor). Thus even if the change in the A–US and
B–US associations were equal, one would expect that AB+
trials would augment responding to B more than to A. Simi-
larly, nonreinforcement of the AB compound might result in
equal A–US and B–US decrements, but responding to A may
fall further as it forms an association to the inhibitory B.

Rescorla controlled for the effect of within-compound as-
sociations in his Experiments 5 and 6. His findings were
unchanged: Stage 2 AB+ trials gave a greater change in B
than A, and vice versa for Stage 2 AB- trials. We were also
careful to control for the effect of within-compound associa-
tions. In Stage 2, in addition to AB+ trials subjects also
experienced CD “exposure trials”. On these trials subjects
saw cues C and D paired, but were not told whether or not
the outcome occurred. Hence on these trials within-
compound C–D–associations would form while C–US and
D–US associations remain unchanged. The effect of A–B
association formation would thus be matched by develop-
ment of C–D associations. Therefore any difference between

Figure 1. Associations developed following Stage 1, according
to APECS. Excitatory connections are shown by solid lines, in-
hibitory associations by dotted lines. Negative bias on hidden
units is indicated by a minus sign.



AD and BC following Stage 2 could only be due to unequal
changes in A–US and B–US associations on AB+ trials. The
same holds true for the CNR condition.

Our investigation used an allergy prediction paradigm
with human subjects. This paradigm has been used success-
fully in several studies of human causal learning (e.g. Dick-
inson & Burke, 1996; Le Pelley, Cutler & McLaren, 2000).
Participants play the role of a food allergist judging the like-
lihood that various foods will cause an allergic reaction in a
hypothetical patient. The foods, then, constitute the cues;
the allergic reaction is the US. Following training, subjects
rated how strongly certain individual foods, and compounds
of two foods, predicted the occurrence of an allergic reaction.
These ratings were taken as our measure of the strength of
conditioning. This was a within-subjects experiment: sub-
jects experienced all the different contingencies concurrently.

The Filler trials were included to ensure equal numbers of
positive and negative trial types in each stage. In addition,
they increase the number of different trial types seen by sub-
jects, again following Dickinson & Burke and Le Pelley et
al. This creates a large memory load, hopefully preventing
subjects from basing their ratings on inferences made from
explicit episodic memories of the various trial types. Instead
subjects should have to rely on associative processes to pro-
vide an “automatic” measure of the causal efficacy for each
cue. Using a large number of trial types makes us more con-
fident that it is indeed associative, rather than cognitive,
processes being tapped in our study.

Method

Participants Twenty members of Cambridge University (10
female, 10 male; age 19-49) took part in the experiment.

Procedure At the start of the experiment each subject was
given a sheet of instructions presenting the “allergy prediction”
cover story for the experiment. They were told that in the first
block they would arrange for Mr. X to eat different meals on
each day, and would monitor whether he had an allergic reaction
or not as a result. In relation to the exposure trials (that do not
bear on the issue at hand in this paper), subjects were told that
occasionally the results of eating the foods had been lost. On
these trials they would know the foods eaten in the meal, but not
the result of eating those foods. They were also told that later on
they would be asked to rate some of the foods according to how
strongly they predicted allergic reactions.

On each conditioning trial, the words “Meal [meal number]
contains the following foods:” followed by the two foods ap-
peared on the screen. Subjects were then asked to predict
whether or not eating the foods would cause Mr. X to have an
allergic reaction, using the “x” and “.” keys (counterbalanced).
The screen then cleared, and immediate feedback was provided.
On positive trials the message “ALLERGIC REACTION!” ap-
peared on the screen; on negative trials the message “No Reac-
tion” appeared. If an incorrect prediction was made, the com-
puter beeped. On the exposure trials of Stage 2, the same mes-
sage appeared, but now subjects were cued to enter the initial
two letters of each of the foods. This was to ensure that they
paid attention to the pairings of foods when no allergy predic-
tion was required. The 24 foods used were randomly assigned to
the letters A to X in the experimental design for each subject.

As shown in Table 1, there were 16 trial types in Stage 1, and
8 in Stage 2. Stages 1 and 2 were split into 8 sub-blocks, with

each trial type appearing once in each sub-block (hence subjects
saw each trial type 8 times). The order of trials within each sub-
block was randomised, as was the order of presentation on the
screen (first/second) within each compound pair.

After Stage 1, subjects were asked to rate their opinions of
the effect of eating certain foods on a scale from -10 to +10.
They were to use +10 if the food was very likely to cause an al-
lergic reaction in Mr. X, -10 if the food was very likely to pre-
vent the occurrence of allergic reactions which other foods were
capable of causing, and 0 if eating the food had no effect on Mr.
X (i.e. it neither caused nor prevented allergic reactions). For
clarification, participants also had access to a card on which the
instructions on how to use the rating scale were printed. Once a
meal had been rated it disappeared from the screen and the next
appeared: participants could not revise their opinions upon
seeing later meals. Subjects were given a second rating test after
Stage 2, when they were asked to rate meals containing either
one food or two. Exactly the same test procedure was used.

Results and Discussion
The results of Test 1 indicated that we had been successful in
generating conditioned excitation (to A and F, mean rating
8.63) and inhibition (to B and G, mean rating –8.1), as
compared to Q (mean rating 0.6), which is never paired with
the US and hence should remain neutral. Planned compari-
sons revealed that the average of A and F (which are equiva-
lent) was significantly higher than Q, which was in turn
significantly higher than B and G (which are also equivalent)
[F(1,19)=65.9 and 93.2 respectively, ps<0.001].

Figure 2 shows the mean rating of the casual efficacy of
each of the meals of interest as judged in the test following
Stage 2. We see that the compound AD is rated higher than
BC. This is confirmed statistically [F(1,19)=5.87, p<0.05].
This implies that reinforcing the AB compound led to a
greater increase in the associative strength of the excitatory
A than the inhibitory B. This is, of course, diametrically
opposite to Rescorla’s earlier findings with rats and pigeons.

In addition, we see that FI is rated significantly higher
than GH [F(1,19)=4.43, p<0.05]. This implies that nonrein-
forcement of the FG compound led to a greater decrement in
the associative strength of the inhibitory G than the excita-
tory F. Again, this is opposite to Rescorla’s findings.

Like Rescorla’s, our results suggest that the distribution
of associative changes among the elements of a compound
depends on the associative history of those elements. This
asymmetry in associative change contradicts any model em-
ploying a common error term governing associative change

Figure 2. Mean ratings given to the cues of interest.
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for all stimuli present, as these models are constrained to
predict equal changes for these stimuli.

However, unlike Rescorla’s results, we found that it is the
cue whose associative strength is less discrepant from that
supported by the outcome of the trial that undergoes the
greater associative change. Our empirical findings agree with
the predictions of the APECS model of learning and mem-
ory outlined earlier. This was confirmed by simulation. We
performed 20 simulations with APECS, each representing a
different subject. Each trial involved 1000 learning cycles. A
hidden unit is defined as being “active” when it receives
positive activation from the input layer. Thus if cue A is
presented to the network, any hidden unit representing a con-
figuration that includes cue A will be active. Activity ex-
tends into the period immediately following each trial, when
no inputs are presented (again for 1000 learning cycles). The
learning rate parameters for input–hidden and hidden–output
units are both 0.8 when a hidden unit is active and has a
positive error, and 0 when it is not. The parameter for
bias–hidden changes is 0.3 when a hidden unit is active, 0
when it is not. The exact values of these parameters are un-
important: the pattern of results is robust under quite large
variations in the values used. The results of the simulation
are shown in Figure 3. As expected, we see that AD is rated
higher than BC, and FI is rated higher than GH. Both differ-
ences are significant [F(1,19)=20.2 and 3.2 respectively,
ps<0.05]. This is, of course, the pattern seen in our empiri-
cal data, and the opposite of Rescorla’s results.

The theories explicitly considered thus far describe cue
competition effects in terms of modifications in the effec-
tiveness of the US. If the US is surprising (i.e. error is
high) then it is able to support more learning than if it is
already predicted (and therefore less surprising). The contri-
bution of the CS to learning is assumed to be fixed, and is
determined by its salience (α, or the parameter for learning
weights in APECS). In addition to such US-centred views,
there exist a number of influential theories of associative
learning that instead ascribe cue competition to variations in
the processing of the CS. For example, blocking of B on
AB+ trials following A+ pretraining might be interpreted as
reduced processing of B as a result of earlier learning about
A’s predictive power. Typically, these CS-processing mod-
els specify a role for attentional processes in determining the
distribution of associative change undergone by the cues of a
compound. The attention paid to a cue depends on the asso-
ciative history of that cue, so perhaps these theories would
be better-suited to explaining our results.

Mackintosh (1975) proposed just such a model of selec-
tive attention. This theory states that good predictors of an
outcome will retain a higher salience (i.e. will receive
greater attention) than poorer predictors. The calculation
determining the attention to be paid to stimulus A relies on
a comparison of the predictive power of A for the outcome
occurring on that trial with the predictive power of all other
presented cues for that same outcome. This calculation is
carried out after every trial. If cue A is a better predictor of
the outcome of that trial than any other cue present, its sali-
ence increases for the next trial, and vice versa. Hence this
model proposes that CSs followed by their expected out-

comes (be this reinforcement or nonreinforcement) garner
greater salience. CSs followed by surprising events (again,
be this reinforcement or omission of reinforcement) lose
salience.

According to the Mackintosh theory, learning about each
element of an AB compound is governed by the discrepancy
between λ and the individual strength of that element (rather
than the discrepancy between λ and the summed strengths of
A and B), modulated by the attention it receives. Thus:

∆VA = αA βUS λUS − VA( ) (2)

where αA represents the attention paid to cue A.
Consider the CR Condition of our experiment. During

Stage 1, A is consistently followed by the US, and B is
consistently followed by no US. Thus both will begin Stage
2 with fairly high salience, as they are both good predictors
of their respective “outcomes” (which for B is actually non-
reinforcement). On Stage 2 AB+ trials, however, A is a bet-
ter predictor of the outcome (reinforcement) than B, which
predicts nonreinforcement. Hence attention to A will remain
high, while that for B will be reduced rapidly: increments in
VA will remain relatively high over Stage 2 trials, while
increments in VB will become progressively smaller. As a
result, Mackintosh (1975) is able to predict that over all
Stage 2 trials, the increment in VA will be greater than that
for VB. This is, of course, exactly the pattern seen in our
empirical data. A similar story holds for the CNR contin-
gency – on Stage 2 FG- trials, the inhibitory G is a better
predictor of nonreinforcement than the excitatory F. Hence
attention to G will remain high over Stage 2, while atten-
tion to F will fall. So overall we might expect a greater
decrement in responding to G than to F.

In general, then, and in agreement with our data, Mackin-
tosh (1975) is able to predict that the stimulus whose asso-
ciative strength is less discrepant from the outcome of the
trial (i.e. the better predictor of the outcome) will show the
greater change on compound training.

Intriguingly Mackintosh’s (1975) can also explain Res-
corla’s empirical data, which are diametrically opposed to
our own, by appealing to the notion of overtraining (Mack-
intosh, personal communication). If we train subjects on
Stage 1 until the associative strengths of excitors and inhibi-
tors closely approach their asymptotic values, then the pre-
dictions made by the theory change dramatically.

As a result of this overtraining, A and B will also have
very high salience (near asymptote) at the start of Stage 2.

Figure 3. Simulation of the data using APECS.

0.4

0.5

0.6

0.7

0.8

0.9

AD BC FI GH



On the initial AB+ trial, then, both will be well processed
(as the calculation to update the salience of a cue is per-
formed after each trial). Given that the error term governing
associative change for a cue involves only the current asso-
ciative strength of that cue, rather than the summed strength,
the stimulus whose associative strength is more discrepant
from that supportable by the outcome of the trial will un-
dergo greater change. In other words, on the initial AB+
trial, it will actually be the poorer predictor of the trial’s
outcome (B) that undergoes the greatest associative change,
as this cue will have the greater error term. Notably, if A’s
associative strength is near asymptote (λ), its error term
according to equation (2) will be near zero. Given that it is
error that drives changes in associative strength, this means
that any change in VA will be only very slight. Of course
the modulation of attention discussed earlier will still occur.
Thus following this initial trial, attention to A (a good pre-
dictor of the outcome) remains high, while that for B (a poor
predictor of the outcome) will be reduced. So subsequent
changes in VB will become increasingly smaller. However,
given that VA was already near asymptote at the start of
Stage 2, it will undergo little further increase over Stage 2
trials. In other words, the effect of Stage 1 training out-
weighs any influence of attentional modulation in Stage 2.
In fact, the effect of attentional modulation may be reduced
even further in the case of an overtrained contingency if we
follow Sutherland & Mackintosh’s (1971, p. 491) sugges-
tion that the high attentional strengths developed as a result
of overtraining are “sticky”: a high α value is reduced more
slowly than an intermediate value. As such the high value of
αB will persist over several AB+ trials. This, combined with
B’s high error value on these trials, will result in large in-
crements in VB over several trials before more significant
reductions in αB start to take their toll on the size of the
increments. Thus by appealing to overtraining in Stage 1,
Mackintosh (1975) is able to predicts Rescorla’s finding that
VB increases more than VA as a result of AB+ trials.

On this analysis, then, the difference between Rescorla’s
experiment and our own is that in the former, Stage 1 condi-
tioning led to near-asymptotic associative strengths such
that any effect of selective attention in Stage 2 was out-
weighed. The notion of sticky α values developed as a result
of overtraining will further reduce the influence of atten-
tional processes. In our experiment, however, we must as-
sume that Stage 1 training did not approach asymptotic lev-
els, such that both cues in the Stage 2 compound were free
to undergo associative change as dictated by their salience.

Conclusion
In common with Rescorla’s earlier experiments, our results
indicate that a cue’s associative history is important when
determining the magnitude of its associative change. Unlike
Rescorla’s experiments, however, our data indicate that it is
the better predictor of an outcome that undergoes the greater
associative change on compound conditioning. This finding
may reflect different rules governing the distribution of asso-
ciative change among elements of a compound in humans
and animals, or may simply be a result of different levels of
initial training in the human and animal studies. Given only
the results of the current experiment we cannot choose be-

tween a “US processing” model of learning and memory
employing adaptive generalisation with configural represen-
tation (APECS), and a model of selective attention in which
CSs compete for attention (Mackintosh, 1975). However,
taken in conjunction with several other findings from this
laboratory (Le Pelley, Cutler & McLaren, 2000, Le Pelley
& McLaren, in press; Le Pelley & McLaren, this issue), we
believe that the results of all the human data may be better
explained by APECS.
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