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Abstract 

This paper compares four models of the processes and 

representations in probability judgment. The models rep-

resent three principles that have been proposed in the lit-

erature: 1) the representativeness heuristic (interpreted 

as relative likelihood or prototype-similarity), 2) cue-

based relative frequency, and 3) similarity-graded prob-

ability. An experiment examined if these models account 

for the probability judgments in a category learning task. 

The results indicated superior overall fit for similarity-

graded probability throughout training. In the final block, 

all models except similarity-graded probability were re-

futed by data.  

Introduction 

Where do probability judgments come from? This ques-

tion has been fiercely debated the last decades in re-

search on judgment under uncertainty. In the late sixties 

the conclusion was that probability judgments are fairly 

accurate reflections of extensional properties of the 

environment such as frequencies (Peterson & Beach, 

1967). This changed with the influential heuristics and 

biases program in the seventies and eighties, which 

emphasized that probability judgments are guided by 

intensional aspects like similarity (Kahneman, Slovic, 

& Tversky, 1982). The nineties saw a renewed interest 

in the idea that extensional properties are reflected in 

peoples’ probability judgments as specified by the eco-
logical models (Gigerenzer, Hoffrage, & Kleinbölting, 

1991; Juslin, 1994). A third alternative combines inten-

sional and extensional properties in an exemplar model 

to produce similarity-graded probabilities (Juslin & 

Persson, 2000). 

Only rarely have these accounts been contrasted in 

studies that chart the processes and representations that 

underlie probability judgments. We compare four mod-

els of how people make probability judgments in a 

category learning task. The task involves assessment of 

the probability that a probe with feature pattern t be-

longs to one of two mutually exclusive categories, A or 

B. For example, a physician may assess the probability 

that a patient with symptom pattern t suffers from one 

of two diseases. The models represent three principles 

that have been proposed in the judgment literature: the 

representativeness heuristic (two versions), cue-based 
relative frequency, and similarity-graded probability.

We present a category structure that allows us to con-

trast predictions derived from these hypotheses. 

Representativeness Heuristic 

According to the representativeness heuristic, people 

judge the probability that an object or event belongs to 

a category on the basis of the degree to which it is rep-

resentative of the category, or reflects salient features of 

the process that generated it (Kahneman et al., 1982). 

The representativeness heuristic is routinely evoked 

post hoc to explain cognitive biases but has not been 

subjected to careful tests in inductive learning tasks. 

A relative-likelihood interpretation of representative-

ness states that the probability judgment p(A) that probe 

t belongs to A is made by comparing the likelihood of t

in category A relative to its likelihood in categories A

and B:
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where f(t|A) and f(t|B) are the relative frequencies of 

feature patterns identical to t in categories A and B,

respectively. To allow for pre-asymptotic learning 

(Nosofsky, Kruschke, & McKinley, 1992) and response 

error in the use of the overt probability scale (Erev, 

Wallsten, & Budescu, 1994), all models in this paper 

are equipped with a free parameter d for dampening. 

The dampening effectively pulls the predictions to-

wards .5 (e.g., an un-dampened prediction of 1 becomes 

somewhat less extreme as a result of d). Eq. 1 implies 

that the probability judgment that, say, a patient with 

symptom pattern t has disease A is a direct function of 



the likelihood of these symptoms given disease A.1

A prototype interpretation of representativeness is 

that the probability judgments derive from the similari-

ties S(t|PA) and S(t|PB) of t to the category prototypes PA

and PB, respectively: 
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where the similarity is computed by the multiplicative 

similarity rule of the context model (Medin & Schaffer, 

1978),
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where y is a prototype (as in Eq. 2 above) or an exem-

plar (as in Eq. 5 below). The value of dj is 1 if the val-

ues on feature j match and s if they mismatch. Similar-

ity s is a free parameter in the interval [0, 1] for the 

impact of mismatching features. 

On this view, the probability judgment that a patient 

with symptom pattern t has disease A is a function of t’s

similarity to the prototypical symptom pattern for dis-

ease A. The prototype is defined by the modal (i.e., 

most frequent) feature value in the category on each 

feature dimension. When the feature values are equally 

common, we selected the feature value that generated 

the more frequent overall pattern in the category. 

Cue-Based Relative Frequency

The idea that probability judgments derive from cue-

based relative frequency is represented by Probabilistic 

Mental Model theory (PMM-theory; Gigerenzer et al., 

1991; see e.g., Juslin, 1994, for similar ideas). These 

ideas have been used to scaffold global predictions in 

studies of realism of confidence, but not been tested in 

studies of inductive learning. 

In the current context, we interpret PMM-theory as 

suggesting that the probability judgment that probe t

belongs to category A is a function of the cue value (α1)

of the single most valid cue that can be applied: 
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where F(A|α1***) and F(B|α1***) are the frequencies

of category A and B exemplars with cue value α1, re-

spectively, and the symbol “∗” denotes that the other 

cue values are discarded (there are four features in the 

experiment presented below). Eq. 3 represents the rela-

tive frequency of category A conditional on presence of 

cue value α1. Thus, a subjective probability judgment is 

1 “Direct function” means that the predicted probability 

judgments are a function of likelihoods alone, not likelihoods 

and prior probabilities, as implied by Bayes’ theorem.

a reflection of the validity of the cue with the highest 

cue-validity that is present in the event or object being 

judged. This strategy is known as Take The Best (TTB) 

meaning that you rely on the cue with the highest valid-

ity (Gigerenzer, Todd, & the ABC Group, 1999). 

Similarity-Graded Probability 

A class of models that combines intensional and exten-

sional aspects is exemplar models in categorization 

research. In exemplar models, decisions are made by 

comparing new objects with exemplars stored in mem-

ory. The context model (Medin & Schaffer, 1978) re-

sponds to both similarity (intensional property) and 

frequency (extensional property) in general, and to only 

one of these factors in predictable circumstances (Juslin 

& Persson, 2000). PROBEX (i.e., PROBabilities from 

EXemplars; Juslin & Persson, 2000) is a model of 

probability judgment based on the context model. 

With PROBEX, probability judgments are made by 

comparisons between the probe t and retrieved exem-

plars xi (i = 1…I). The exemplars are represented as 

vectors of D features (in the present experiment, D=4

and the features are binary). Continuing with the exam-

ple of medical diagnosis, a patient with symptom pat-

tern t leads to retrieval of stored exemplars of previous 

patients with similar symptoms and their diagnoses. 

The probability judgment is a weighted average of the 

outcome indices c(xi) for the exemplars, where c(xi)=1

for exemplars in category A and c(xi)=0 for exemplars 

in category B. The weights in the average are the re-

spective probe-exemplar similarities S(t|xi):
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where similarity is computed from Eq. 3. This hypothe-

sis implies that if a new patient with symptom pattern t
is similar to many exemplars xi with diagnosis A, the 

probability that the new patient has disease A is high. 

The complete version of PROBEX involves a 

sequential sampling of exemplars, but this aspect is 

ignored in the present application. This effectively 

reduces Eq. 5 to the original context model (Medin & 

Schaffer, 1978) with a dampening (see Nosofsky et al., 

1992, for a similar formulation), but with one crucial 

difference: p(A) does not refer to a predicted proportion 

of category A classifications, but to a prediction of a 

probability judgment. 

With similarity parameter s=0, only exemplars with 

feature patterns identical to t affect the judgment and 

Eq. 5 emulates a “picky frequentist” (Juslin & Persson, 

2000).2 Ignoring the dampening d, Eq. 5 then computes 

2 This version of Eq. 5 is formally identical to Bayesian es-

timation of a probability with the Beta-distribution and pa-

rameters α and β equal to .5d.



the relative frequency of category A among exemplars 

with identical features. For s>0, Eq. 5 computes a simi-
larity-graded probability that is both affected by the 

frequency of exemplars, and the probe-exemplar simi-

larities. Note that, although PROBEX responds to simi-

larity, it is not identical to the representativeness heuris-

tic. For example, PROBEX (Eq. 5) cannot produce a 

conjunction fallacy, unless amended with auxiliary 

assumptions of some sort (Juslin & Persson, 2000). 

PROBEX has been fitted to people’s probability judg-

ments in a general knowledge task (Juslin & Persson, 

2000) but not been tested in inductive learning tasks. 

Category Structure and Predictions 

The problem with contrasting these three hypotheses is 

that in most category structures, they generate highly 

correlated predictions. Table 1, however, provides one 

category structure that implies qualitatively distinct 

predictions for certain critical exemplars (Figure 1). 

Table 1: The categories with the 20 x 3 exemplars.

X   C1  C2  C3  C4    C5  C6  C7  C8    C9  C10 C11 C12    Category 

1     1    1    1    1      3    3    3    3      5    5    5    5       A  A  A 
2     1    1    1    1      3    3    3    3      5    5    5    5       A  A  A 
3     1    1    1    1      3    3    3    3      5    5    5    5       A  A  A 
4     1    1    1    1      3    3    3    3      5    5    5    5       A  A  B 
5     1    1    1    1      3    3    3    3      5    5    5    5       A  B  B 

6     1    0    0    0      3    2    2    2      5    5    5    4       A  A  A 
7     1    0    0    0      3    2    2    2      4    4    4    4       A  A  B 
8     1    0    0    0      3    2    2    2      4    5    4    4       A  A  B 
9     0    0    0    0      3    2    2    2      4    4    4    4       A  A  B 
10   0    0    0    0      3    2    2    2      4    5    4    4       A  A  B 

11   1    1    0    0      3    2    2    2      4    4    4    4       B  A  B 
12   1    1    0    0      3    2    2    2      4    4    5    4       B  A  B 
13   0    1    0    0      3    2    2    2      4    4    4    4       B  A  B 
14   0    1    0    0      3    2    2    2      4    4    5    4       B  A  B 
15   0    1    0    0      3    2    2    2      4    4    4    4       B  A  B 

16   0    0    1    1      3    2    2    2      4    4    4    5       B  A  B 
17   0    0    1    1      3    2    2    2      4    4    4    4       B  A  B 
18   0    0    1    1      2    3    3    3      4    4    4    4       B  B  B 
19   0    0    1    1      2    3    3    3      4    4    4    4       B  B  B 
20   0    0    1    1      2    3    3    3      4    4    4    4       B  B  B 

The design involves 60 exemplars with four features 

each, organized into three substructures. The 20 exem-

plars in the first substructure have features C1-C4, the 

20 in the second substructure have features C5-C8 and 

the last 20 have features C9-C12. The feature has two 

possible values (0 vs. 1, for C1-C4; 2 vs. 3 for C5-C8; 4 

vs. 5 for C9-C12). The last three columns headed by 

“Category” specify whether the exemplar is in category 

A or B. The first column is for exemplars with features 

C1-C4, the second for exemplars with features C5-C8,

and the third for exemplars with features C9-C12.

In the first part of the experiment, the 60 exemplars 

are presented with feedback about whether they belong 

to category A or B. In the second part, the participants 

are asked to estimate the probability that probes with 

certain feature patterns belong to category A. There are 

fifteen distinctive feature patterns, six for features C1-

C4, three for features C5-C8, and six for features C9-C12.

The participants estimate the probability of category A

for all fifteen patterns. The critical patterns are 1111 for 

features C1-C4, 3333 for C5-C8 and 5555 for C9-C12.

Across these, the models provide distinctly different 

predictions (see Figure 1). 
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Figure 1: Predicted probability judgments. All predic-

tions are derived with d=0. The predictions for repre-

sentativeness with prototype similarity (P) are based on 

s=.1. The predictions for PROBEX are based s=0 (i.e., 

Picky frequentist). 

For example, the predictions for feature pattern 3333 

are derived as follows. The representativeness heuristic 

with a likelihood interpretation implies p(A) = 

.25/(.25+.25) = .5: the probe is identical to 25% of the 

exemplars in category A and 25% of the exemplars in 

category B. In regard to a representativeness heuristic 

with prototype similarity, we note that the prototypes 

for category A and B in the second substructure (i.e., 

based on C5-C8) are 3222 and 2333, respectively. Ignor-

ing the dampening d, Equation 2 implies the prediction 

s3/(s3+s). The prototype for A differs on three features 

and the prototype for B on one feature. The prediction 

depends on the parameter s, but it will generally be low 

and always lower than .5. With cue-based relative fre-

quency, p(A) = 16/(16+1) = .94. Given the value of 3 

for the most valid cue C5, 16 of 17 exemplars belong to 

category A. According to the picky frequentist predic-

tion by PROBEX (s=0), p(A) = 4/5 = .8. Four out of 

five exemplars with identical feature patterns belong to 



category A. At s>0, the prediction falls below .8. Pre-

dictions for the other two critical patterns are derived in 

the same way. 

Note in Figure 1 that, depending on the model, the 

probability judgments for the three critical patterns 

have a different rank order. These predicted rank orders 

are a priori and not dependent on the parameters (i.e., s

or d). By comparing the observed with the predicted 

rank order, we get a qualitative test of the models. In 

addition, we can evaluate the quantitative fit of the 

models to the judgments for all 15 feature patterns. 

Method 

Participants 

Twenty-four undergraduate students (10 men and 14 

women) in the age of 19 to 32 (average age = 23.3) 

participated. The participants where paid between 65-

86 SEK depending on their performance. They received 

30 SEK plus 1 SEK for each correct answer in the last 

learning block. 

Apparatus and Materials 

The experiment was carried out on a PC–compatible 

computer. In each of the four training blocks, the pro-

gram first presented the 60 exemplars from Table 1. 

The task involved judgments for 60 companies, where 

20 companies belonged to each of three countries (sub-

structures). Each exemplar had four features that dif-

fered depending on the country. The features are pre-

sented in Table 2. The features and names of the coun-

tries were chosen to be as neutral as possible. In the test 

phase after each training block, the program presented 

each of the 15 distinct feature patterns twice. 

Design and Procedure 

A two-way within-subjects design was used. The inde-

pendent variables were the number of training blocks 

(four blocks) and category substructure (three substruc-

tures). The dependent variable was the probability 

judgments. The specific assignment of concrete cue 

labels (see Table 2) to the abstract category structure 

(see Table 1) was varied and counterbalanced across the 

participants. Thus, each concrete label in Table 2 ap-

peared equally often in each of the three substructures 

and equally often in the role of each of the abstract 

features denoted C1 to C12 in Table 1. 

The participants were to act as stockbrokers assigned 

to invest a large sum of money in three countries about 

which they knew nothing. They were told that it is 

usually enough to know four company features to know 

if the stock will rise or fall in the next twelve-months, 

but that the features differ between the countries. 

Table 2: Twelve concrete features used in the experi-
ment.

Features                    Descriptions 

1) Listed at the LAP / IPEK stock exchange? 
2) Less / more than 1000 employees?  
3) Commercials on television / the radio? 
4) Changed owner / merged in last three years? 

5) Less than / more than three years old? 
6) Give money to charity / sponsor sports team? 
7) Active in specific region / whole country? 
8) Co-operation with university / own research department? 

9) In state-financed SKATOS / TAPOS program? 
10) Primarily export-based / import-based? 
11) Affirmative action based on gender / ethnic background? 
12) Stock risen / fallen during the last 12-month? 

The participants were told that the first phase is a 

training session where they are presented with 60 com-

panies, each described by four features that depend on 

the country. The features describe the companies as 

they were twelve months ago. They were to guess 

whether the stocks rose (A) or fell (B) in value in the 

last year. After each judgment, they received feedback 

on the actual development. The four features were pre-

sented on the screen. Below the question “Will the 

stock-value rise or fall during the next twelve month?” 

appeared. The participant answered s (short for the 

Swedish word for rise) or f (short for the Swedish word 

for fall). Thereafter, the correct answer appeared to-

gether with the company’s four features. 

In the test phase, the participants were told that they 

were to see a set of companies as they are today and 

judge the probability of an increase in their stock-value 

and that the markets are identical on all parameters 

today as they were one year ago. The feature patterns 

were presented in the same way as in the training phase, 

but with the question: “What is the probability that the 

stock of this company increases in value in the next 12 

months?” They were told to answer in percentages and 

even up to 0, 10…100. 

The test blocks consisted of two assessments of the 

15 distinct feature patterns, one for rising stock-value 

(A) and one for falling stock-value (B). This allowed us 

to examine the additivity of the probability judgments 

(i.e., if the mean probability assigned to A and B for a 

feature pattern sum to 1). To get reliable data we re-

coded probability-B judgments into probability-A

judgments by subtracting the probability-B judgments 

from 1. There was no feedback. The order of the prob-

ability judgments was counterbalanced within partici-

pants. The training and test blocks were repeated four 

times. The entire procedure took between one hour and 

fifteen minutes to two hours. 



Results

Figure 2 presents mean probability judgments for the 

critical feature patterns in each of the four test blocks. 

The data for the third block shows a tendency to agree 

with the prediction by PROBEX. The fourth block 

exhibits clear agreement with the prediction by 

PROBEX. The confidence intervals for exemplars, 

1111 and 5555 are clearly separated and the predicted 

decreasing trend is observed which refute all models 

except PROBEX. 
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Figure 2: Means with 95% confidence intervals for the 
estimations of the critical exemplars for the four test 
blocks. 

For the first two blocks, the data reveal no clear trend 

favoring any of the four models. One tentative interpre-

tation of this result is that it reflects a mix of individual 

strategies in the early stages of training. To explore this 

more carefully, we fitted the four models to the data 

from all 15 distinct feature patterns. The probability 

judgments proved to be additive on average (i.e., the 

mean probability assigned to A and B for a feature pat-

tern sum to 1). 

The models were fitted to the mean probability judg-

ments for each of the 15 distinct feature patterns with 

Root Mean Square Deviation (RMSD) as error func-

tion. This was done separately for each of the four test 

blocks. The model based on the representativeness 

heuristic as relative likelihood has one free parameter 

(d), representativeness heuristic as prototype similarity 

has two free parameters (s & d), cue-based relative 

frequency has one free parameter (d), and exemplar-

based retrieval (PROBEX) has two free parameters (s & 

d). The results are summarized in Table 3. 

Table 3 verifies that in the later stages of training, 

PROBEX provides a good fit to the data. Because the 

standard error of measurement is .05, the RMSDs for 

PROBEX (.054 & .058) come close to saturating the 

data. Considering all four blocks it is clear that cue-

based relative frequency fits the judgments poorly in all 

blocks. Although the qualitative pattern in Figure 1 for 

blocks 1 and 2 does not accord with PROBEX, we find 

that it is the best fitting model throughout training. The 

models based on the representativeness heuristic exhibit 

moderate fit early in training, which successively 

deteriorates with training. 

Table 3: Fit of the models as a function of test block in 
terms of RMSD and coefficients of determination r2.

 Test Block 
Model Index 1 2 3 4 

RMSD .087 .111 .105 .124 Repr. (L) 
r2 .65 .69 .70 .73 

RMSD .094 .123 .124 .158 Repr. (P) 
r2 .61 .62 .58 .55 

RMSD .139 .193 .188 .234 Cue-based 
r2 .20 .21 .23 .22 

RMSD .060 .067 .054 .058 PROBEX 
r2 .87 .92 .92 .95 
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Figure 3: The percent of participants best described by 
each of the four models, in each of the four test blocks. 

Finally, these conclusions were verified at the level 

of individual participants. The same model-fitting pro-

cedure was performed for each participant, with the 

exception that all models were fitted with one free pa-

rameter (d). In each block, the percentage of partici-

pants for which each model provided the best fit was 

ascertained. Figure 3 shows that PROBEX is the most 

frequent winner, although a minority of participants is 



better fitted by representativeness as relative likelihood, 

mostly in the early test blocks.

Discussion

Research on subjective probability judgment has been 

characterized by a normative stance, where judgments 

are compared to norms from probability theory. Cogni-

tive theory has primarily been evoked to provide post 

hoc explanations, as in most applications of the repre-

sentativeness heuristic, or as scaffolds for more general 

predictions, as in the applications of cue-based relative 

frequency. The point of departure for our research is the 

need to make closer contact between cognitive theory 

and judgment research in controlled studies that allow 

us to support or refute core concepts in judgment re-

search, such as the representativeness heuristic. 

The results reported here provide clear support for 

the hypothesis of similarity-graded probability (Juslin 

& Persson, 2000). That an exemplar model is success-

ful may not appear surprising considering the impres-

sive performance of exemplar models in categorization 

studies (Nosofsky & Johansen, 2000). Yet, the results 

are at variance with crucial ideas in judgment research, 

like that of a representativeness heuristic (Kahneman et 

al., 1982) or cue-based relative frequency (Gigerenzer 

et al., 1991; Juslin, 1994). 

The second to best fitting model was representative-

ness as relative likelihood, but this may be spurious as, 

the crucial feature patterns in Figure 1 aside, the predic-

tions by the models tend to be correlated. However, the 

superiority of PROBEX is not a mere consequence of a 

greater inherent flexibility. To demonstrate this, we 

used the predictions for the last test block by represen-

tativeness as relative likelihood as fictive “true data” 

and added a normally distributed random error with a 

standard deviation of .05 to mimic measurement error. 

To this fictive data set, representativeness provided a 

superior fit (RMSD=.053, r2=.97) as compared to 

PROBEX (RMSD=.096, r2= .83). Thus, the better fit of 

PROBEX appears to reflect more than larger flexibility 

in the face of random error. 

The best-fitting version of PROBEX (s=.21) in the 

last test block is not the Picky frequentist version iden-

tical to Bayesian estimation of the probability with a 

Beta-distribution (see Footnote 2). This suggests that, at 

least in regard to this more simplistic implementation of 

a Bayesian algorithm, PROBEX provides a better fit to 

data. 

The main objection against the present study is per-

haps that it is a single study involving one specific 

category structure. The category structure used here 

was guided by the aim of allowing qualitatively distinct 

predictions by the four models. This category structure 

may accidentally favor one model over another. Per-

haps, a category structure more coherently organized 

around prototypes yields more support for representa-

tiveness as prototype similarity? Likewise, a more fea-

ture-rich category structure that posits more demand on 

information search may yield more support for cue-

based relative frequency in the form of TTB (Gigeren-

zer et al., 1999). Only further research can tell. In any 

event, these hypotheses will have to count with a seri-

ous contestant in the form of PROBEX. 
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