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Abstract

This paper compares four models of the processes and
representations in probability judgment. The models rep-
resent three principles that have been proposed in the lit-
erature: 1) the representativeness heuristic (interpreted
as relative likelihood or prototype-similarity), 2) cue-
based relative frequency, and 3) similarity-graded prob-
ability. An experiment examined if these models account
for the probability judgments in a category learning task.
The results indicated superior overall fit for similarity-
graded probability throughout training. In the final block,
all models except similarity-graded probability were re-
futed by data.

Introduction

Where do probability judgments come from? This ques-
tion has been fiercely debated the last decades in re-
search on judgment under uncertainty. In the late sixties
the conclusion was that probability judgments are fairly
accurate reflections of extensional properties of the
environment such as frequencies (Peterson & Beach,
1967). This changed with the influential heuristics and
biases program in the seventies and eighties, which
emphasized that probability judgments are guided by
intensional aspects like similarity (Kahneman, Slovic,
& Tversky, 1982). The nineties saw a renewed interest
in the idea that extensional properties are reflected in
peoples’ probability judgments as specified by the eco-
logical models (Gigerenzer, Hoffrage, & Kleinbdlting,
1991; Juslin, 1994). A third alternative combines inten-
sional and extensional properties in an exemplar model
to produce similarity-graded probabilities (Juslin &
Persson, 2000).

Only rarely have these accounts been contrasted in
studies that chart the processes and representations that
underlie probability judgments. We compare four mod-
els of how people make probability judgments in a
category learning task. The task involves assessment of
the probability that a probe with feature pattern ¢ be-

longs to one of two mutually exclusive categories, 4 or
B. For example, a physician may assess the probability
that a patient with symptom pattern ¢ suffers from one
of two diseases. The models represent three principles
that have been proposed in the judgment literature: the
representativeness heuristic (two versions), cue-based
relative frequency, and similarity-graded probability.
We present a category structure that allows us to con-
trast predictions derived from these hypotheses.

Representativeness Heuristic

According to the representativeness heuristic, people
judge the probability that an object or event belongs to
a category on the basis of the degree to which it is rep-
resentative of the category, or reflects salient features of
the process that generated it (Kahneman et al., 1982).
The representativeness heuristic is routinely evoked
post hoc to explain cognitive biases but has not been
subjected to careful tests in inductive learning tasks.

A relative-likelihood interpretation of representative-
ness states that the probability judgment p(4) that probe
t belongs to A4 is made by comparing the likelihood of ¢
in category A relative to its likelihood in categories A
and B:
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where f(7|4) and f(#|B) are the relative frequencies of
feature patterns identical to ¢ in categories 4 and B,
respectively. To allow for pre-asymptotic learning
(Nosofsky, Kruschke, & McKinley, 1992) and response
error in the use of the overt probability scale (Erev,
Wallsten, & Budescu, 1994), all models in this paper
are equipped with a free parameter d for dampening.
The dampening effectively pulls the predictions to-
wards .5 (e.g., an un-dampened prediction of 1 becomes
somewhat less extreme as a result of d). Eq. 1 implies
that the probability judgment that, say, a patient with
symptom pattern ¢ has disease 4 is a direct function of



the likelihood of these symptoms given disease A4."

A prototype interpretation of representativeness is
that the probability judgments derive from the similari-
ties S(t|P,) and S(#|Pp) of t to the category prototypes P,
and Pp, respectively:
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where the similarity is computed by the multiplicative
similarity rule of the context model (Medin & Schaffer,
1978),
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where y is a prototype (as in Eq. 2 above) or an exem-
plar (as in Eq. 5 below). The value of d; is 1 if the val-
ues on feature j match and s if they mismatch. Similar-
ity s is a free parameter in the interval [0, 1] for the
impact of mismatching features.

On this view, the probability judgment that a patient
with symptom pattern ¢ has disease 4 is a function of #’s
similarity to the prototypical symptom pattern for dis-
ease 4. The prototype is defined by the modal (i.e.,
most frequent) feature value in the category on each
feature dimension. When the feature values are equally
common, we selected the feature value that generated
the more frequent overall pattern in the category.
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Cue-Based Relative Frequency

The idea that probability judgments derive from cue-
based relative frequency is represented by Probabilistic
Mental Model theory (PMM-theory,; Gigerenzer et al.,
1991; see e.g., Juslin, 1994, for similar ideas). These
ideas have been used to scaffold global predictions in
studies of realism of confidence, but not been tested in
studies of inductive learning.

In the current context, we interpret PMM-theory as
suggesting that the probability judgment that probe #
belongs to category A4 is a function of the cue value (o)
of the single most valid cue that can be applied:
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where F(A|oy***) and F(B|oy***) are the frequencies
of category A and B exemplars with cue value o, re-
spectively, and the symbol “*” denotes that the other
cue values are discarded (there are four features in the
experiment presented below). Eq. 3 represents the rela-
tive frequency of category 4 conditional on presence of
cue value o,. Thus, a subjective probability judgment is

! “Direct function” means that the predicted probability
judgments are a function of likelihoods alone, not likelihoods
and prior probabilities, as implied by Bayes’ theorem.

a reflection of the validity of the cue with the highest
cue-validity that is present in the event or object being
judged. This strategy is known as Take The Best (TTB)
meaning that you rely on the cue with the highest valid-
ity (Gigerenzer, Todd, & the ABC Group, 1999).

Similarity-Graded Probability

A class of models that combines intensional and exten-
sional aspects is exemplar models in categorization
research. In exemplar models, decisions are made by
comparing new objects with exemplars stored in mem-
ory. The context model (Medin & Schaffer, 1978) re-
sponds to both similarity (intensional property) and
frequency (extensional property) in general, and to only
one of these factors in predictable circumstances (Juslin
& Persson, 2000). PROBEX (i.e., PROBabilities from
EXemplars; Juslin & Persson, 2000) is a model of
probability judgment based on the context model.

With PROBEX, probability judgments are made by
comparisons between the probe ¢ and retrieved exem-
plars x; (i = 1...I). The exemplars are represented as
vectors of D features (in the present experiment, D=4
and the features are binary). Continuing with the exam-
ple of medical diagnosis, a patient with symptom pat-
tern ¢ leads to retrieval of stored exemplars of previous
patients with similar symptoms and their diagnoses.
The probability judgment is a weighted average of the
outcome indices c(x;) for the exemplars, where c(x;)=1
for exemplars in category 4 and c(x;)=0 for exemplars
in category B. The weights in the average are the re-
spective probe-exemplar similarities S(#|x;):
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where similarity is computed from Eq. 3. This hypothe-
sis implies that if a new patient with symptom pattern ¢
is similar to many exemplars x; with diagnosis A4, the
probability that the new patient has disease 4 is high.

The complete version of PROBEX involves a
sequential sampling of exemplars, but this aspect is
ignored in the present application. This effectively
reduces Eq. 5 to the original context model (Medin &
Schaffer, 1978) with a dampening (see Nosofsky et al.,
1992, for a similar formulation), but with one crucial
difference: p(4) does not refer to a predicted proportion
of category A classifications, but to a prediction of a
probability judgment.

With similarity parameter s=0, only exemplars with
feature patterns identical to ¢ affect the judgment and
Eq. 5 emulates a “picky frequentist” (Juslin & Persson,
2000).” Ignoring the dampening d, Eq. 5 then computes

% This version of Eq. 5 is formally identical to Bayesian es-
timation of a probability with the Beta-distribution and pa-
rameters o and f3 equal to .5d.



the relative frequency of category 4 among exemplars
with identical features. For s>0, Eq. 5 computes a simi-
larity-graded probability that is both affected by the
frequency of exemplars, and the probe-exemplar simi-
larities. Note that, although PROBEX responds to simi-
larity, it is not identical to the representativeness heuris-
tic. For example, PROBEX (Eq. 5) cannot produce a
conjunction fallacy, unless amended with auxiliary
assumptions of some sort (Juslin & Persson, 2000).
PROBEX has been fitted to people’s probability judg-
ments in a general knowledge task (Juslin & Persson,
2000) but not been tested in inductive learning tasks.

Category Structure and Predictions

The problem with contrasting these three hypotheses is
that in most category structures, they generate highly
correlated predictions. Table 1, however, provides one
category structure that implies qualitatively distinct
predictions for certain critical exemplars (Figure 1).

Table 1: The categories with the 20 x 3 exemplars.

X C| C2 C3 C4 C5 C(, C7 Cg Cg C10C|1C12 Category
11111 3333 5555 AAA
21111 3333 55595 AAA
31111 3333 5555 AAA
4 1111 3333 55595 A AB
51 1 11 3333 5 5 55 A BB
6 1.0 00 3 222 5554 AAA
7 1 0 0 0 3 2 2 2 44 4 4 AAB
§ 1 0 00 3 2 2 2 45 44 AAB
9 0000 32 22 44 4 4 AAB
100 0 00 32 2 2 45 44 AAB
111100 3 2 2 2 4 4 4 4 B AB
121100 3 222 445 4 B AB
30100 3 2 22 444 4 BAB
40100 3222 4454 BAB
150 1 0 0 3 2 2 2 4 4 4 4 B AB
16 0 0 1 1 3 2 22 4 4 45 B AB
170 0 1 1 32 22 44 4 4 BAB
80 0 1 1 2333 444 4 BBB
90 0 1 1 2 3 33 4 4 4 4 BBB
200 0 11 2 3 3 3 4 4 4 4 BBB

The design involves 60 exemplars with four features
each, organized into three substructures. The 20 exem-
plars in the first substructure have features C;-C,, the
20 in the second substructure have features Cs-Cg and
the last 20 have features Co-C,,. The feature has two
possible values (0 vs. 1, for C;-Cy; 2 vs. 3 for Cs-Cg; 4
vs. 5 for Cyo-Cyp). The last three columns headed by
“Category” specify whether the exemplar is in category
A or B. The first column is for exemplars with features
C,-C,4, the second for exemplars with features Cs-Cg,
and the third for exemplars with features Cy-Cj,.

In the first part of the experiment, the 60 exemplars
are presented with feedback about whether they belong
to category 4 or B. In the second part, the participants

are asked to estimate the probability that probes with
certain feature patterns belong to category A. There are
fifteen distinctive feature patterns, six for features C;-
C,, three for features Cs-Cg, and six for features Cy-Cy5.
The participants estimate the probability of category A
for all fifteen patterns. The critical patterns are 1111 for
features C;-C4, 3333 for Cs-Cg and 5555 for Cy-Cys.
Across these, the models provide distinctly different
predictions (see Figure 1).
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Figure 1: Predicted probability judgments. All predic-
tions are derived with d=0. The predictions for repre-
sentativeness with prototype similarity (P) are based on
s=.1. The predictions for PROBEX are based s=0 (i.e.,
Picky frequentist).

For example, the predictions for feature pattern 3333
are derived as follows. The representativeness heuristic
with a likelihood interpretation implies p(4) =
.25/(.25+.25) = .5: the probe is identical to 25% of the
exemplars in category 4 and 25% of the exemplars in
category B. In regard to a representativeness heuristic
with prototype similarity, we note that the prototypes
for category 4 and B in the second substructure (i.e.,
based on Cs-Cy) are 3222 and 2333, respectively. Ignor-
ing the dampening d, Equation 2 implies the prediction
§°/(s>+s). The prototype for A differs on three features
and the prototype for B on one feature. The prediction
depends on the parameter s, but it will generally be low
and always lower than .5. With cue-based relative fre-
quency, p(4) = 16/(16+1) = .94. Given the value of 3
for the most valid cue Cs, 16 of 17 exemplars belong to
category A. According to the picky frequentist predic-
tion by PROBEX (s=0), p(4) = 4/5 = .8. Four out of
five exemplars with identical feature patterns belong to



category 4. At s>0, the prediction falls below .8. Pre-
dictions for the other two critical patterns are derived in
the same way.

Note in Figure 1 that, depending on the model, the
probability judgments for the three critical patterns
have a different rank order. These predicted rank orders
are a priori and not dependent on the parameters (i.e., s
or d). By comparing the observed with the predicted
rank order, we get a qualitative test of the models. In
addition, we can evaluate the quantitative fit of the
models to the judgments for all 15 feature patterns.

Method

Participants

Twenty-four undergraduate students (10 men and 14
women) in the age of 19 to 32 (average age = 23.3)
participated. The participants where paid between 65-
86 SEK depending on their performance. They received
30 SEK plus 1 SEK for each correct answer in the last
learning block.

Apparatus and Materials

The experiment was carried out on a PC—compatible
computer. In each of the four training blocks, the pro-
gram first presented the 60 exemplars from Table 1.
The task involved judgments for 60 companies, where
20 companies belonged to each of three countries (sub-
structures). Each exemplar had four features that dif-
fered depending on the country. The features are pre-
sented in Table 2. The features and names of the coun-
tries were chosen to be as neutral as possible. In the test
phase after each training block, the program presented
each of the 15 distinct feature patterns twice.

Design and Procedure

A two-way within-subjects design was used. The inde-
pendent variables were the number of training blocks
(four blocks) and category substructure (three substruc-
tures). The dependent variable was the probability
judgments. The specific assignment of concrete cue
labels (see Table 2) to the abstract category structure
(see Table 1) was varied and counterbalanced across the
participants. Thus, each concrete label in Table 2 ap-
peared equally often in each of the three substructures
and equally often in the role of each of the abstract
features denoted C,; to C;, in Table 1.

The participants were to act as stockbrokers assigned
to invest a large sum of money in three countries about
which they knew nothing. They were told that it is
usually enough to know four company features to know
if the stock will rise or fall in the next twelve-months,
but that the features differ between the countries.

Table 2: Twelve concrete features used in the experi-
ment.

Features Descriptions

1) Listed at the LAP / IPEK stock exchange?
2) Less / more than 1000 employees?

3) Commercials on television / the radio?

4) Changed owner / merged in last three years?

5) Less than / more than three years old?

6) Give money to charity / sponsor sports team?

7) Active in specific region / whole country?

8) Co-operation with university / own research department?

9) In state-financed SKATOS / TAPOS program?

10) Primarily export-based / import-based?

11) Affirmative action based on gender / ethnic background?
12) Stock risen / fallen during the last 12-month?

The participants were told that the first phase is a
training session where they are presented with 60 com-
panies, each described by four features that depend on
the country. The features describe the companies as
they were twelve months ago. They were to guess
whether the stocks rose (4) or fell (B) in value in the
last year. After each judgment, they received feedback
on the actual development. The four features were pre-
sented on the screen. Below the question “Will the
stock-value rise or fall during the next twelve month?”
appeared. The participant answered s (short for the
Swedish word for rise) or f (short for the Swedish word
for fall). Thereafter, the correct answer appeared to-
gether with the company’s four features.

In the test phase, the participants were told that they
were to see a set of companies as they are today and
judge the probability of an increase in their stock-value
and that the markets are identical on all parameters
today as they were one year ago. The feature patterns
were presented in the same way as in the training phase,
but with the question: “What is the probability that the
stock of this company increases in value in the next 12
months?” They were told to answer in percentages and
even up to 0, 10...100.

The test blocks consisted of two assessments of the
15 distinct feature patterns, one for rising stock-value
(A) and one for falling stock-value (B). This allowed us
to examine the additivity of the probability judgments
(i.e., if the mean probability assigned to 4 and B for a
feature pattern sum to 1). To get reliable data we re-
coded probability-B judgments into probability-A4
judgments by subtracting the probability-B judgments
from 1. There was no feedback. The order of the prob-
ability judgments was counterbalanced within partici-
pants. The training and test blocks were repeated four
times. The entire procedure took between one hour and
fifteen minutes to two hours.



Results

Figure 2 presents mean probability judgments for the
critical feature patterns in each of the four test blocks.
The data for the third block shows a tendency to agree
with the prediction by PROBEX. The fourth block
exhibits clear agreement with the prediction by
PROBEX. The confidence intervals for exemplars,
1111 and 5555 are clearly separated and the predicted
decreasing trend is observed which refute all models
except PROBEX.
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Figure 2: Means with 95% confidence intervals for the
estimations of the critical exemplars for the four test
blocks.

For the first two blocks, the data reveal no clear trend
favoring any of the four models. One tentative interpre-
tation of this result is that it reflects a mix of individual
strategies in the early stages of training. To explore this
more carefully, we fitted the four models to the data
from all 15 distinct feature patterns. The probability
judgments proved to be additive on average (i.e., the
mean probability assigned to 4 and B for a feature pat-
tern sum to 1).

The models were fitted to the mean probability judg-
ments for each of the 15 distinct feature patterns with
Root Mean Square Deviation (RMSD) as error func-
tion. This was done separately for each of the four test
blocks. The model based on the representativeness
heuristic as relative likelihood has one free parameter
(d), representativeness heuristic as prototype similarity
has two free parameters (s & d), cue-based relative
frequency has one free parameter (d), and exemplar-

based retrieval (PROBEX) has two free parameters (s &
d). The results are summarized in Table 3.

Table 3 verifies that in the later stages of training,
PROBEX provides a good fit to the data. Because the
standard error of measurement is .05, the RMSDs for
PROBEX (.054 & .058) come close to saturating the
data. Considering all four blocks it is clear that cue-
based relative frequency fits the judgments poorly in all
blocks. Although the qualitative pattern in Figure 1 for
blocks 1 and 2 does not accord with PROBEX, we find
that it is the best fitting model throughout training. The
models based on the representativeness heuristic exhibit
moderate fit early in training, which successively
deteriorates with training.

Table 3: Fit of the models as a function of test block in
terms of RMSD and coefficients of determination 2.

Test Block
Model Index 1 2 3 4
Repr. (L) RMSD  .087 111 105 124
I 65 .69 70 73
Repr. (P) RMSD 094 123 124 158
I 61 62 58 .55
Cue-based RMSD  .139 193 188 234
I 20 21 23 22
PROBEX RMSD  .060 067 054 058
I .87 92 92 95
Block 1 Block 2

) Repr. (P)

125 %

20.8 %
Cue-based

Block 3

Repr. (L)

Repr. (L)
25.0 %

PROBEX
45.8 %
Repr. (P)
2%
%Y 20.8 %

8.3 %
Cue-based

Block 4

Repr. (L)

PROBEX )
542 % % Repr. (P)
a

Cue-based

o
Cue-based

Figure 3: The percent of participants best described by
each of the four models, in each of the four test blocks.

Finally, these conclusions were verified at the level
of individual participants. The same model-fitting pro-
cedure was performed for each participant, with the
exception that all models were fitted with one free pa-
rameter (d). In each block, the percentage of partici-
pants for which each model provided the best fit was
ascertained. Figure 3 shows that PROBEX is the most
frequent winner, although a minority of participants is



better fitted by representativeness as relative likelihood,
mostly in the early test blocks.

Discussion

Research on subjective probability judgment has been
characterized by a normative stance, where judgments
are compared to norms from probability theory. Cogni-
tive theory has primarily been evoked to provide post
hoc explanations, as in most applications of the repre-
sentativeness heuristic, or as scaffolds for more general
predictions, as in the applications of cue-based relative
frequency. The point of departure for our research is the
need to make closer contact between cognitive theory
and judgment research in controlled studies that allow
us to support or refute core concepts in judgment re-
search, such as the representativeness heuristic.

The results reported here provide clear support for
the hypothesis of similarity-graded probability (Juslin
& Persson, 2000). That an exemplar model is success-
ful may not appear surprising considering the impres-
sive performance of exemplar models in categorization
studies (Nosofsky & Johansen, 2000). Yet, the results
are at variance with crucial ideas in judgment research,
like that of a representativeness heuristic (Kahneman et
al., 1982) or cue-based relative frequency (Gigerenzer
etal., 1991; Juslin, 1994).

The second to best fitting model was representative-
ness as relative likelihood, but this may be spurious as,
the crucial feature patterns in Figure 1 aside, the predic-
tions by the models tend to be correlated. However, the
superiority of PROBEX is not a mere consequence of a
greater inherent flexibility. To demonstrate this, we
used the predictions for the last test block by represen-
tativeness as relative likelihood as fictive “true data”
and added a normally distributed random error with a
standard deviation of .05 to mimic measurement error.
To this fictive data set, representativeness provided a
superior fit (RMSD=.053, r*=.97) as compared to
PROBEX (RMSD=.096, *= .83). Thus, the better fit of
PROBEX appears to reflect more than larger flexibility
in the face of random error.

The best-fitting version of PROBEX (s=.21) in the
last test block is not the Picky frequentist version iden-
tical to Bayesian estimation of the probability with a
Beta-distribution (see Footnote 2). This suggests that, at
least in regard to this more simplistic implementation of
a Bayesian algorithm, PROBEX provides a better fit to
data.

The main objection against the present study is per-
haps that it is a single study involving one specific
category structure. The category structure used here
was guided by the aim of allowing qualitatively distinct
predictions by the four models. This category structure

may accidentally favor one model over another. Per-
haps, a category structure more coherently organized
around prototypes yields more support for representa-
tiveness as prototype similarity? Likewise, a more fea-
ture-rich category structure that posits more demand on
information search may yield more support for cue-
based relative frequency in the form of TTB (Gigeren-
zer et al., 1999). Only further research can tell. In any
event, these hypotheses will have to count with a seri-
ous contestant in the form of PROBEX.

Acknowledgments

Bank of Sweden Tercentenary Foundation supported
this research.

References

Erev, 1., Wallsten, T. S., & Budescu, D. V. (1994).
Simultaneous over- and underconfidence: The role of
error in judgment processes. Psychological Review,
101, 519-527.

Gigerenzer, G., Hoffrage, U., & Kleinbélting, H.
(1991). Probalistic mental models: A Brunswikian
theory of confidence. Psychological Review, 98, 506-
528.

Gigerenzer, G., Todd, P. M, & the ABC Research
Group. (1999). Simple heuristics that make us smart.
New York: Oxford University Press.

Juslin, P. (1994). The overconfidence phenomenon as a
consequence of informal experimenter-guided selec-
tion of almanac items. Organizational Behavior and
Human Decision Processes, 57, 226-246.

Juslin, P., & Persson, M. (2000). Probabilities from
exemplars (PROBEX): A “lazy” algorithm for prob-
abilistic inference from generic knowledge. Manu-
script submitted for publication.

Kahneman, D., Slovic, P., & Tversky, A. (Eds.) (1982).
Judgment under uncertainty: Heuristics and biases.
New York: Cambridge University Press.

Medin, D. L., & Schaffer, M. M. (1978). Context the-
ory of classification learning, Psychological Review,
85,207-238.

Nosofsky, R. M., & Johansen, M. K. (2000). Exemplar-
based accounts of “multiple-system” phenomena in
perceptual categorization. Psychonomic Bulletin and
Review, 7, 375-402.

Nosofsky, R. M., Kruschke, J. K., & McKinley, S. C.
(1992). Combining exemplar-based category repre-
sentations and connectionist learning rules. Journal
of Experimental Psychology: Learning, Memory, and
Cognition, 18, 211-233.

Peterson, C. R, & Beach, L. R. (1967). Man as an intui-
tive statistician. Psychological Bulletin, 68, 29-46.



