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Abstract

Any viable model of serial reaction time (SRT) sequence
learning needs to be able to capture the relative extents to
which participants learn different SRT sub-sequences.
However, previous attempts to empirically establish a
relative pattern of this sort have failed to fully control for
‘sequential-effects’, or have not satisfactorily ruled-out the
influence of speed-accuracy trade-off. In this paper it is
shown that, when sequential-effects are controlled for in a
two-choice SRT task, participants learn those sub-
sequences that end in an alternation better than those that
end in a repetition. It is further demonstrated that, at least
for the parameters investigated, a buffer network, a Jordan
network, an SRN, an augmented SRN, and an AARN are
unable to account for this pattern.

Introduction1

Since its introduction (Lewicki, Czyzewska & Hoffman,
1987; Nissen & Bullemer, 1987) the serial reaction time
(SRT) task has proved a popular way to assay human
sequence learning. In the most common version of this task
a stimulus can appear in one of several locations on a
computer screen, each of which has a corresponding response
key. Whenever a stimulus appears, participants simply have
to press the appropriate key as quickly and accurately as
possible. Crucially, usually unknown to the participants,
the order of locations in which the stimulus is presented
follows a sequence, at least for the majority of the time.

Typically, participants’ reaction times (RTs) on trials
that are consistent with this sequence become significantly
faster, either than their RTs on occasional inconsistent probe
trials, or than the RTs of a control group that is only
exposed to a (pseudo-)random ordering (e.g. Anastasopoulou
& Harvey, 1999). This is taken to imply that the
participants have learnt at least part of the sequence, and that
they are using this information to prepare for the stimulus
or response on the next trial.

The widespread use of this task makes it a priority to
develop an adequate model of human SRT performance. A
particularly stringent test of any candidate model is to
capture the relative extents to which participants learn
different parts (sub-sequences) of an SRT sequence.
Unfortunately, however, nearly all of the patterns of sub-
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sequence learning that have been reported in the literature are
potentially confounded by ‘sequential-effects’ (cf.
Anastaspoulou & Harvey, 1999; Shanks & Johnstone,
1999).

‘Sequential-effects’ can be defined as the influence that
the previous series of stimulus/response locations has on the
participant’s current response, in a choice-RT task in which
the trial order is (pseudo-)random (e.g. Soetens, Boer &
Hueting, 1985). To illustrate, in a two-choice task at a
response-stimulus-interval (RSI) of 50ms, participants tend
to respond faster when the stimulus appears in the same
location as it did on the prior trial (Soetens et al., 1985).

Therefore, in order to more accurately assess SRT
sequence learning, the performance of the sequence group and
pseudo-random control group need to be compared on a ‘test-
phase’ in which they are both exposed to the same order of
trials; the assumption being that the two groups should
manifest the same sequential-effects when responding to
identical trial orders, allowing the difference between the
groups to be used as an index of sequence learning.

However, the majority of previous SRT studies have
failed to control for sequential effects in this manner (e.g.
Nissen & Bullemer, 1987), calling into question the
apparent patterns of sub-sequence learning they report.2

Furthermore, the two previous studies that have adequately
controlled for sequential effects, namely Anastasopoulou and
Harvey (1999) and Shanks and Johnstone (1999), have not
reported error data in sufficient detail to rule out the
possibility that participants traded speed and accuracy
between different sub-sequences.

Therefore it was necessary to carry out a new experiment
in order to establish a relative pattern of SRT sub-sequence
learning against which models of the SRT task could be
tested.

Experiment
The experiment comprised a five session two-choice SRT
task, with an Experimental Group that was trained on four
sub-sequences and a Control Group that was exposed to a
pseudo-random ordering for the same number of trials. To
control for sequential effects, following training all

2 Some authors have attempted to reduce the influence of
sequential-effects by removing trials that they feel are
particularly contaminated (e.g. Jimenez, Mendez & Cleeremans,
1996). However, it is not clear that this is sufficient.



participants were ‘tested’ on pseudo-random orderings, with
the difference between the two groups being taken as an
index of sequence learning.

Method
There is not the space to give full methodological details,
but these will be provided in Jones and McLaren (in prep.).3

Participants, Stimuli and Apparatus The
participants were 24 Cambridge University students and
members of the public, whose ages ranged between 18 and
47. 16 were randomly assigned to the Experimental Group
and 8 to the Control. This difference in numbers did not
cause any reliable differences in variance between the groups;
therefore the subsequent ANOVAs are valid. The experiment
was run on a Macintosh LCIII, and the stimulus comprised a
circle 1.9 cm in diameter which could appear 2.2 cm to the
right or left of the centre of the screen. The two response
keys were spatially compatible with these locations.

Trial Order The trials were batched into blocks of 120,
and are described here in terms of Xs and Ys. The
assignment of X and Y to right and left was counterbalanced
across participants. As illustrated in Figure 1, the building
blocks of the ‘sequence-blocks’ were four sub-sequences,
each three trials long; specifically XXX, XYY, YYX and
YXY. These sub-sequences conform to the rule ‘if the first
and second trials are the same then the third is an X, but if
they differ it is a Y’. Sequence-blocks were constructed by
concatenating 10 of each of these sub-sequences in a random
order. Thus every third trial in a sequence-block was
predictable on the basis of the previous two. Participants
were not informed about the special status of third trials, and
the RSI following third trials was the same as that
following other trials.4 It is also worth noting that when the
properties of these sequence-blocks are considered on a trial-
by-trial basis, then approximately two-thirds of the trials are
consistent with the rule, and on average the four sub-
sequences occur equally frequently. (This was confirmed by
the Monte-Carlo method.)

....XXXXXXYYXXYYYYXXXXYXYYYXYYXXXX.....

XXX XYY YXY YYX

....XXYXXXXYXXYYYYXXYXXXXYXYYXXYYXYYY...

XXY XYX YXX YYY

Figure 1: Examples of portions of a sequence-block (top)
and a pseudo-random-block (bottom), with some of the
constituent triplets highlighted.

3 This paper will not include the simulation work presented
here.

4 The sequence-blocks were constructed so that the third trials
had a special status because the original purpose of the
experiment was to compare the pattern of sub-sequence learning
between this incidental condition and one in which participants
were told about the third trials (see Jones & McLaren, in prep.).

‘Pseudo-random-blocks’ comprised 5 of each of the sub-
sequences (XXX, XYY, YYX and YXY) and 5 of each of the
complementary triplets with alternate endings (XXY, XYX,
YYY and YXX), randomly concatenated.

Design Each session comprised 20 blocks. The first 10
blocks of session one and the last 10 blocks of session five
constituted the pre- and post-training ‘test-phases’, and were
formed of pseudo-random-blocks for both groups. The 80
block ‘training-phase’ in between these comprised sequence-
blocks for the Experimental Group and pseudo-random-
blocks for the Control Group.

Procedure The procedure followed that described for the
standard SRT task in the introduction, with the addition that
participants were paid a performance bonus, designed to
encourage them to be as fast and accurate as possible. The
RSI was 500ms.

Results and Discussion
Due to space constraints, only those analyses most relevant
to the subsequent modelling are reported here, but see Jones
and McLaren (in prep.) for full details. Furthermore, only
the RT results have been presented because the same trends
were observed in the errors, ruling out speed-accuracy trade-
off.

To assay sub-sequence learning, the data from the third
trials of the first five blocks5 of the post-training test-phase
were divided up with respect to the identity of the previous
two trials (i.e. XX, XY, YY and YX). They were then
further divided on the basis of whether the third trial was
consistent with the sub-sequence begun by the previous two
trials (e.g. XXX) or inconsistent with it (e.g. XXY). For the
Control Group consistency was a dummy variable, since
they had never been trained on the sub-sequences.

Figure 2: The mean difference scores from the third trials of
the first half of the post-training test phase. Filled circles =
Experimental Group. Open circles = Control Group.

A mean RT for each of the resulting eight trial types was
calculated, on a per participant basis. To reduce variability,
RTs were not taken from error trials or trials following an
error. Then, for each sub-sequence, a difference score was
constructed by subtracting the consistent RT from the
inconsistent one. This measure was used because it subtracts

5 An analysis of the learning curves suggested that extinction
had set in by blocks 6-10 (see Jones & McLaren, in prep.).

-50

-25

0

25

50

XXX
(RR)

XYY
(AR)

YYX
(RA)

YXY
(AA)

Subsequence

In
co

n
. 

R
T

 -
 C

o
n

. 
R

T
 



out individual variability in baseline RT. The mean
difference score for each sub-sequence, per group, are shown
in Figure 2.

Following the convention adopted in the two-choice
sequential effects literature (e.g. Soetens et al., 1985), the
four sub-sequences were coded in terms of whether each trial
was a repetition (R) or an alternation (A) of the previous
trial (i.e. XXX=RR, XYY=AR, YYX=RA and YXY=AA).
The difference scores were then analysed using an ANOVA
with the factors: group (experimental vs. control), first
position in the alternation-repetition sub-sequence code (A or
R), and second position (A or R).

This demonstrated that the Experimental Group’s
difference scores were significantly larger those of the
Control Group (F(1,22)=31.77, p<.01). This suggests that
the participants in the Experimental Group learnt at least
some of the sequential contingencies, because sequence
learning should produce slower RTs on inconsistent trials
and faster RTs on consistent trials, and thus a larger
inconsistent minus consistent score.

The group X first-position (reading from left to right)
interaction was not significant (F<1), nor was the group X
first-position X second-position interaction (F<1). However,
the group X second-position interaction was reliable
(F(1,22)=5.14, p<.05). According to a simple effects
analysis, this interaction arose because the Experimental
Group’s difference scores were significantly greater than
Control for those sub-sequences that ended in an alternation
(F(1,22)=18.12, p<.01) but not for those that ended in a
repetition (F(1,22)=0.17, p>.1).

Thus it would appear that differential learning of the sub-
sequences occurred, with participants only learning those
sub-sequences that ended in an alternation within the time of
the experiment.

Furthermore, this pattern would appear not to be
contaminated by a floor effect, because if just the results
from the inconsistent trials are analysed then the same trend
is observed. (The expression of learning cannot be masked
by RT being at floor on inconsistent trials because learning
should slow responding on such trials.)

Finally, when data from all trials was included in the
analysis, rather than just from the third trials, a similar
pattern of sub-sequence learning was observed. Thus there
was no evidence to suggest that the participants in the
Experimental Group had learned about the special status of
third trials (i.e. that they were always consistent during
training). Rather, participants appear to have learnt the 2/3
contingencies that are present on a trial by trial basis (see
method section).

In summary, in a two choice SRT task in which
sequential effects are controlled for, it appears that people
learn those sub-sequences that end in an alternation better
than those that end in a repetition. But can the current neural
network models of SRT sequence learning capture this
pattern?

Modelling
To address this question, a variety of different neural network
models of SRT sequence learning were presented with an

exact analogue of the human task. These models all include
some form of memory for previous trials. It is by
associating a combination of the contents of this memory
and a representation of the current trial with the identity of
the next trial that they learn the sequential contingencies. As
the models learn they become more accurate at predicting the
next trial’s identity, and consequently the mean squared error
(MSE) of their prediction reduces.

Therefore, in the following simulations the MSE has
been taken as an index of the models’ RT to the stimulus
that it is attempting to predict; the rationale being that a low
MSE indicates that a model accurately expects the location
of the next stimulus and so it should react more quickly to it
when it occurs. While some authors transform the MSE
using a decision rule or mechanism (cf. Cleeremans, 1993),
this was avoided in order to prevent the properties of the
models from potentially being obscured by the addition of an
extra process.

In all the following simulations a localist code, with one
unit for X and one for Y, was used to represent the input to
the models and their predictions. The trial order was
generated in exactly the same way as in the experiment, and
for each type of model both an Experimental and Control
Group were run. Finally, to assay sequence learning the
models’ MSEs from the first half of the post-training test-
phase were analysed in the same way as the human data.

The different types of networks studied will now be
considered in turn.

Figure 3: A buffer network.

The Buffer Network
The architecture of a buffer network is shown in Figure 3. In
this model a memory is simply implemented by presenting
as input to the network all the necessary elements of the
sequence. Thus, the network’s input comprises a
representation of the current trial and a decayed (by half)
representation of the previous trial. Trials prior to this are
not included since the contingencies in the sequence-blocks
are only depended upon the previous two trials. The
architecture includes a layer of hidden units, because these
enable it to learn non-linearly separable mappings
(Rumelhart, Hinton & Williams, 1986), and the weights are
updated using the backpropagation algorithm (Rumelhart,
Hinton & Williams, 1986). For more details concerning
buffer networks see Cleeremans (1993, pp. 141-143). (Note,
a momentum term was not employed).

Thirty-two separate buffer networks, each with 4 hidden
units, were run on an analogue of the experiment. Sixteen
formed the Control Group and 16 the Experimental Group.
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Each network ‘subject’ had a different set of randomly
initialised weights. And, the learning rate was set to 0.8,
since this value meant that the networks had learnt two of
the four sub-sequences by the post-training test-phase, like
the human participants had.

Figure 3: The Buffer networks’ difference scores from the
third trials of the first half of the post-training test phase.
Filled circles = Experimental Group. Open circles = Control.

The mean post-training MSE difference scores are shown
in Figure 3. The data were analysed using a group (2 levels)
by sub-sequence (4 levels) ANOVA. This revealed that the
Experimental Group’s scores were significantly higher than
Control (F(1,30)=17.23, p<.01), indicating that they had
acquired some of the sequential contingencies. Moreover,
there was evidence of differential sub-sequence learning
(group X sub-sequence: epsilon corrected F(2,57)=5.41,
p<.05); with a simple-effects analysis demonstrating that
subjects had reliably learnt subsequences XYY/AR and
YYX/RA (respectively F(1,30)=22.05, p<.01;
F(1,30)=5.84, p<.05), marginally learnt XXX/RR
(F(1,30)=4.06, .1>p>.05), and not learnt YXY/AA
(F(1,30)=0.24, p>.1). The model made similar predictions
with 20 hidden units.

However, these predictions differ from the pattern
expressed by human participants (i.e. stronger learning of
those sub-sequences that ended in an alternation). Therefore,
the buffer network was unable to model the human data, at
least with 4 or 20 hidden units.

Figure 4: A Jordan network.

The Jordan Network
The architecture of a Jordan network (Jordan, 1986),
modified to model the SRT task (Cleeremans, 1993, pp.
139-141), is illustrated in Figure 4. In this model the
identity of previous trials are not explicitly represented on
separate pools of input units. Rather, a memory of the
sequence is implemented by adding to each input unit a self-
recurrent connection of fixed weight, which is 0.5 in this
case. As with the buffer network the variable weights are
updated using the backpropagation algorithm.

Figure 5: The Jordan networks’ difference scores from the
third trials of the first half of the post-training test phase.

To provide reliable results, 34 network subjects were run
in both groups. Each network had 4 hidden units and a
learning rate of 0.5. The results are shown in Figure 5. An
ANOVA revealed reliable evidence of sequence learning
(F(1,66)=42.92, p<.01) and of differential sub-sequence
learning (F(3,198)=17.28, p<.01). A follow up simple-
effects analysis demonstrated that the networks had learnt all
the sub-sequences except XXX/RR (XXX/RR: F(1,66)=
1.47, p>.1; XYY/AR: F(1,66)=39.60, p<.01; YYX/RA:
F(1,66)=20.23, p<.01; YXY/AA: F(1,66)=33.38, p<.01).
Therefore, with 4 hidden units, the Jordan network achieved
a closer match to the human data than the buffer network,
but it still was unable to capture the full detail of the
pattern. When the number of hidden units was increased to
20, the networks’ results were less similar to the human
data.

Figure 6: An SRN.

The Simple Recurrent Network (SRN)
Figure 6 illustrates the architecture of the SRN, which was
developed by Elman (1990). In the SRN a memory of
previous items in the sequence is implemented by providing
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as additional input to the network its own hidden unit
activations from the previous trial. As with the other
models, the weights are updated by the backpropagation
algorithm.

With 4 or 20 hidden units, and a range of large learning
rates (0.5, 0.8, and 1.0), the SRN was incapable of reliably
learning any of the sequential contingencies by the post-
training test-phase (p>.1). However, when sixteen 40
hidden unit SRNs were run in each group (learning rate 0.5),
an ANOVA revealed that reliable sequence learning did occur
(F(1,30)=13.41, p<.01). For the means see Figure 7.

Figure 7: The SRNs’ difference scores from the third trials
of the first half of the post-training test phase.

Moreover, there was reliable evidence of differential sub-
sequence learning (F(3,90)=8.91, p<.01), and according to a
simple-effects analysis the network subjects had learnt all
the sub-sequences except YXY/AA (XXX/RR:
F(1,30)=4.97, p<.05; XYY/AR: F(1,30)=13.82, p<.01;
YYX/RA: F(1,30)=9.37, p<.01; YXY/AA: F(1,30)=1.59,
p>.1). However, this pattern deviates from the advantage for
those sub-sequences that ended in an alternation seen in the
experiment.

The Augmented SRN
In order to allow the SRN to capture a higher proportion of
the variance in their SRT data, Cleeremans and McClelland
(1991) made two modification to it, producing the
Augmented SRN. First, to model the short term priming
effect of previous learning episodes, weights and biases were
divided into both a fast and slow component.

Figure 8: The Augmented SRNs’ difference scores from the
third trials of the first half of the post-training test phase.

Second, to capture response repetition effects the model’s
prediction of the next response was made dependent upon a
decaying trace of previous responses as well as the SRN’s
output. For more details see Cleeremans and McClelland
(1991).

To determine whether this model could capture the
experimental results, 16 networks with 4 hidden units were
run in each group. The learning rates were 1.3 and 1.0 for
the fast and slow weights respectively. The other parameters
were as described in Cleeremans and McClelland (1991).
Given that the SRN’s output activations are transformed in
this model, the transformed activations were employed in the
calculation of the MSE.

The results are shown Figure 8. While the trends may
appear to be very small, an ANOVA did reveal that the
networks had reliably learnt at least some of the
contingencies (F(1,30)=15.64, p<.01) and that this learning
varied across the sub-sequences (F(3,90)=38.64, p<.01). A
subsequent simple-effects analysis demonstrated that
XXX/RR and XYY/AR were learnt (F(1,30)=28.17 and
58.01, p<.01), while the Experimental Group’s scores were
significantly lower than Control for YYX/RA and YXY/AA
(F(1,30)=51.41 and 11.63, p<.01). Thus the pattern of
subsequence learning was the nearly opposite to that
expressed by human subjects. Nor did increasing the number
of hidden units to 20 substantially improve the situation.

Figure 9: An AARN.

The Autoassociative Recurrent Network (AARN)
The AARN, which was developed by Maskara and Noetzel
(1993), is shown in Figure 9. It differs from a standard SRN
in that the network is taught not only to predict the next
trial, but also to predict the pattern of activity across the
input layer. This is implemented by including a extra pool
of output units, with each of these units corresponding to a
particular unit in the input layer. The target for one of these
new output units is the activity of its corresponding input
unit on the same trial.

Fifty AARNs, with four hidden units and a learning rate
of 0.8, were run in each group. This large number of
subjects was required to produce significant results. It is also
worth noting that only the activations of the two output
units that comprised the network’s prediction for the next
trial were included in the calculation of the MSE.
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Figure 10: The AARNs’ difference scores from the third
trials of the first half of the post-training test phase.

The networks’ mean MSE difference scores are shown in
Figure 10. An ANOVA revealed that the Experimental
Group had learnt at least some of the sequential
contingencies (F(1,98)=47.29, p<.01) and that the sub-
sequences had been learnt differentially (F(3,294)=9.77,
p<.01). According to a simple effects analysis, subsequences
XYY/AR and YYX/RA were learnt (F(1,98)=39.81 and
11.59, p<.01), while the remaining two were not
(F(1,98)=0.04 and 1.37, p>.1). This pattern contrasted with
the stronger learning of those sub-sequences that ended in an
alternation observed in the human data. Furthermore,
changing the number of hidden units to 20 did not improve
the situation.

Dominey’s Network
The ability of Dominey’s (1995) model to capture the
human data has also been examined. However, thus far we
have been unable to find a set of parameters that enables the
model to display any evidence of sequence learning on the
task.

General Discussion
To summarise, previous attempts to establish a relative
pattern of SRT sub-sequence learning are flawed because
either they fail to control for sequential effects or do not
present error data in sufficient detail. In a two-choice SRT
task designed to overcome these flaws, it was found that
people learn those sub-sequences that end in an alternation
better than those that end in a repetition. Surprisingly,
however, a buffer network, the Jordan network, the SRN,
the augmented SRN and the AARN all appear unable to
capture this result, at least with the parameters investigated.

A critic could argue that our human data might be
beyond the scope of these models because it may reflect
‘explicit’ rather than ‘implicit’ learning. However, other
work in our laboratory suggests that people show a different
pattern when learning explicitly, namely they find XXX/RR
the most salient sub-sequence. Therefore, it would seem that
current neural network models of SRT sequence learning
will probably at least need to be modified in order to
accommodate the data presented here.
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