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Abstract

It is well known that pairs of dimensions that are
processed holistically - integral dimensions - normally
combine with a Euclidean metric, whereas pairs of
dimensions that are processed analytically - separable
dimensions - most often combine with a city-block
metric. This paper extends earlier research regarding
information integration in that it deals with complex
stimuli consisting of both dimensional pairs previously
identified as holistic, and dimensional pairs previously
identified as analytical. The general pattern identified is
that information integration can be more accurately
described with a rule taking aspects of stimuli into
consideration compared to a traditional rule. For
example, it appears that combinations of analytical and
holistic stimuli, are better described by treating the
different subspaces individually and then combining
these with addition, compared to any single
Minkowskian rule, and much better compared to any of
the Minkowskian rules traditionally used (i.e. the city-
block-, the Euclidean or the dominance-metrics).

Introduction
Suppose we have objects that differ on several
dimensions – how is (dis-) similarity of such objects
related to (dis-) similarity on each of the dimensions?
Since Attneave (1950) raised essentially this question,
much research efforts have been focused on the
applicability of different combination rules. The most
commonly investigated rules, or metrics, for describing
distances in a multidimensional space have been
instances of the generalised Minkowski metric (Eq. 1).
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where d(i,j) is the distance between object i and j, xik

refers to the position of object i on the kth axis and n is
the number of constituting dimensions.

Three extreme cases can be identified: r = 1; the city-
block metric - The distance is the sum of the absolute
differences for each of the underlying dimensions; r =
2: the Euclidean metric - The distance corresponds to
the square root of the sum of the squared differences for
each of the underlying dimensions; and r = � � the
dominance metric - The distance between two objects is
a function of the distance for the separate dimension
that differ the most.

When it comes to cognitive modelling, the city-block
and, especially, the Euclidean metrics are the most

common. However, it is well established that some
pairs of dimensions combine, with Garners (1974)
terminology, to form integral dimensions and others to
form separable dimensions (see e.g. Garner, 1974,
1977). An integral pair typically is processed as
holistic, unanalysable, directly and effortlessly by
subjects and that the constituent dimensions combine so
as to conform to a Euclidean metric; pairs of hue,
saturation or brightness of colour (see e.g. Hyman &
Well, 1967; Kemler Nelson, 1993) and the auditory
dimensions of pitch and loudness (Kemler Nelson,
1993) typically do this. The corresponding description
for a separable pair is that the constituent dimensions
are processed independently by subjects and that they
combine so as to conform to a city-block metric, e.g.
size and reflectance of squares (Attneave, 1950).

Now, the combination rules for integral and separable
dimensions are well investigated for dimensional pairs.
But, what about more complex combinations? How do
we integrate information when both integral and
separable pairs are involved? Adequate descriptions of
information integration behaviour is not only important
from a theoretical perspective, but also from a more
practical and pragmatic machine learning perspective.

Simple parallelograms varying in saturation,
brightness, height and tilt could serve as an example.
Pairs of the dimensions of colour, i.e. of hue, brightness
and saturation, are often used as prototypical examples
of integral dimensions (see e.g. Hyman & Well, 1967;
Kemler Nelson, 1993). Perception of variation in
saturation and brightness on a single colour patch have
in previous studies (e.g. Hyman & Well, 1967; 1968)
been shown to be better described using the Euclidean
compared to the city-block metric. The height- (size-)
and tilt- dimensions of parallelograms is an example of
separable dimensions (Tversky & Gati, 1982). Tversky
and Gati found such pairs to be better described using
the city-block metric compared to the Euclidean.

How, then, could subjects’ phenomenological (dis-)
similarity between parallelograms varying in height,
tilt, saturation and brightness be described? With
reference to the different metric properties of the
underlying pairs of dimensions, it makes sense to divide
the stimuli space into two separate subspaces - one
describing the aspects of shape of the stimuli (i.e. height
and tilt) - the shape space - and one the colour aspects
(i.e. saturation and brightness) - the colour space. In
this case it could be that two different metrics should be



applied: the city-block metric for the shape space and
the Euclidean metric for the colour space. For
combining the separate subspaces into a holistic
measure, simple addition could be expected, with
reference to that the pair of subspaces better fit the
description of separability compared to integrality.

In the remainder of this paper, combination rules,
such that the same Minkowski-r (r) applies to the whole
stimuli space, will be referred to as homogenous rules.
Metrics such that one r, say r1, applies to one subspace,
and one r, say r2, applies to another, and that the holistic
measure is obtained by combining the sub-metrics
separably, will in the following be referred to as
heterogeneous rules or metrics1.

Now, how could we determine which of reasonable
alternatives is the best when we want to describe (dis-)
similarity judgements of stimuli varying in height, tilt,
saturation and brightness?

General Method
The method used by Dunn (1983) in order to investigate
the relationship between dimensional integrality and the
combination rule used in a dissimilarity judgement task,
will be adopted in this paper. However, it will be
generalised in order to deal with stimuli with more than
two underlying dimensions.

The basic idea is to divide the set of dissimilarity
ratings into unidimensional and bidimensional ratings,
reduce them to distances between points in a predefined
dimensional space and then determine the r that best
predicts the bidimensional dissimilarities from the
unidimensional ones. In order to reduce ratings to
distances correspondence, interdimensional additivity,
intradimensional subtractivity and linearity must be
assumed (Dunn, 1983; see also Johannesson, 2001a).
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Figure 1: 12 stimuli and their component distances
(cd1-cd6). (Based on Figure 1. in Dunn, 1983).

A first step is to decompose the unidimensional
distances into component distances (see Figure 1

1 There are few examples of true integral dimensions in the
literature (Grau & Kemler Nelson, 1988). This fact does not
undermine the possible practical importance of heterogenous
models, since perception of many dimensional pairs fall
between the endpoints of a continuum of dimensional
separability (Smith & Kilroy, 1979; Smith, 1980).

above). Further, under the assumption that the function
relating dissimilarities to distances is linear, the
dissimilarities between the stimuli in Figure 1 could,
according to Dunn (1983), be expressed as
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where ),( baδ is the perceived dissimilarity between
object a and b, wiab refers to the weight of the
component distance cdi, and A is an additive constant.

Eq. 2 specifies a multiple regression equation in
which the weights define a set of dummy variables, the
component distances form the regression coefficients
and A is the additive constant.

Determining the Spatial Metric
Performing a multiple regression analysis on
unidimensional dissimilarities provides an estimate of
the component distances and the additive constant.
From these, it is straightforward to estimate any
“Minkowski dissimilarity”. In order to determine the
“best” describing metric for a particular subject, Dunn
(1983) compared the mean observed and the mean
predicted bidimensional dissimilarity using a certain
value of r: overestimation of r lead to underestimation
of the observed mean, whereas underestimation of r
lead to overestimation of the observed mean.

Methodology Adopted
The methodology outlined by Dunn will be adopted
with the exceptions as outlined below. Since the present
paper aims to investigate whether the machine learning
community could gain from using different Minkowski
metrics for different subspaces rather than a single
metric applied to the whole space, the various tests
suggested by Dunn are not central here.

Experiment I

Subjects
14 students at the University of Skövde participated for
a reward of cinema tickets roughly worth £11 or $17.

Stimuli
The stimuli were parallelograms varying in height (h; 4,
5 or 6 units of length), tilt (t; 40, 50 or 60 degrees),
saturation (s; 40, 60 or 80% of maximum saturation)
and brightness (b; 40, 60 or 80% of maximum
brightness). The width and the hue of the
parallelograms were held constant (4 units of length and
240 degrees of the colour circle, respectively).

In order to not exhaust the subjects, 20% of the
possible 3240 pairs (i.e. 648) where chosen randomly.
The order of the selected pairs were randomised.



Procedure
The experimental sessions were performed individually
in a quiet room with drawn curtains.

Each subject was first asked whether she/he had
normal colour vision or not2, and was then asked to
follow the instructions given on the screen.

The experiment consisted of several phases:
• Instruction phase: Subjects were informed that they

should judge dissimilarity between coloured
parallelograms using a 20-graded scale.

• Stimulus presentation: Diminished versions of all
stimuli were presented simultaneously in a
randomised layout.

• Training phase: Subjects made dissimilarity
judgements for ten pairs of coloured parallelograms
varying in the same dimensions as the real stimulus
material. The levels did not coincide with the levels
of the real material.

• Instruction phase: An instruction phase as above
was repeated. This time subjects were also
informed that the judgement sessions would be
divided into six parts with breaks between.

• Stimulus presentation: Subjects were again
presented with the complete stimulus material.

• Judgement phase: The 648 stimulus pairs were
presented in the same random order for all subjects.
The experiment took about 2 hours.

All subjects reported they had normal colour vision.

Results and analysis
Table 1 below presents the average component
distances (see Figure 1 above) per dimension, and the
coefficient of determination for the collapsed data.

Table 1: Average component distances and R2.

Avg_h Avg_t Avg_s Avg_b R2

4.160 2.907 1.214 1.214 0.762

The average component distances, which could be
interpreted as the relative saliency of each dimension
(Dunn, 1983), differ between dimensions. Especially,
the saturation and brightness dimensions have
somewhat shorter component distances (are less
weighted) compared to height and tilt. A possible
explanation for this unequal weighting is that subjects
perceived the variation in height and tilt as larger
compared to the variation for the integral pair of
saturation and brightness.

2 In a pilot experiment preceeding this subjects performed a
colour test in order to find out if they could discriminate
between the colours that were to be used. Since all subjects in
the pilot experiment reported the colour test to be simple a
simple question was judged to be enough.

The coefficient of determination is not very large,
indicating that a linear model misses to account for a
considerable proportion of the variance of the data.

Determining the Spatial Metric When there are just
two underlying dimensions it is obvious that distances
should be estimated and evaluated for stimuli differing
in two dimensions. However, as the number of
underlying dimensions increases, so does the number of
possibilities. In the present case, when four underlying
dimensions were used, stimuli pairs differing in two or
more dimensions were analysed.

Justifying the Measure of Error In order to possibly
improve the process of determining the spatial metric,
two alternative measures of error for a particular r were
contrasted. One was in line with Dunn's method:
deviation of the absolute difference between the mean
observed dissimilarity and the mean predicted/estimated
dissimilarity from the mean observed dissimilarity - in
the following referred to as DEV. The other, referred to
as the mean squared error (MSE), is defined as
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where ),( baδ is the perceived, ),(~
baδ is the

predicted/estimated - dissimilarity between object a and
b, and N is the number of stimuli pairs.

For each of the homogenous rules: city-block,
Euclidean and dominance, and all non-ordered
combinations of heterogeneous rules, where the
subspaces where formed by the city-block, Euclidean or
dominance metric3, the distances between all non-
ordered combinations of stimuli were calculated from
physical descriptions of the stimuli. By regarding the
distances as fictive dissimilarities, and by estimating the
dissimilarities as described above for different rules, the
errors according to DEV and MSE were calculated. The
same subset and physical descriptions as used in the
present experiment were analysed. Further, the
estimated distances were scaled into a discrete scale
ranging from 1 to 20. Since the underlying rule was
known in each case, the two alternative measures of
error could be evaluated against each other.

For the homogeneous models, both DEV and MSE
suggested the same - and correct - underlying model.
For the heterogeneous models MSE suggested the
correct model in all cases. The use of DEV, however,
was clearly systematically ambiguous. In all cases when

3 Note that the heterogenous rule where both subspaces are
formed by the city-block metric exactly corresponds to the
city-block homogenous rule.



the underlying model could be described as metric A
applies to subspace 1 and metric B applies to subspace
2, both the correct model and the model such that
metric B applies to subspace 1 and metric A applies to
subspace 2, were suggested. The explanation is that that
the sum of absolute deviations for the two models
necessarily is the same for a balanced set of stimuli.

In summary, based on this analysis, MSE appear to
be the better measure for the purposes of this paper.

Spatial Metric Candidates for describing the individual
subjects’ data were evaluated using MSE as the
measure of error. In addition to the rules used when
evaluating the two error measures above, i.e.
• the homogenous rules: city-block, Euclidean and

dominance - in the following referred to as Hom
cit, Hom euc and Hom dom, respectively,

• all non-ordered combinations of heterogeneous
rules, where each of the subspaces were formed by
the city-block, Euclidean or dominance metric - in
the following referred to as Het citeuc, Het citdom,
Het euccit, Hit euceuc, Hit eucdom, Hit domcit, Hit
domeuc and Hit domdom, respectively,

errors were calculated for values of Minkowski-r
ranging in small discrete steps from r = 1.0 to r = 50.0
applied to the whole stimuli space (the homogenous
model giving the lowest error will be referred to as
Hom opt), the shape subspace and the colour subspace
respectively. The heterogeneous model where the
separately optimised r for the two-dimensional shape
space is applied to “shape” and the separately optimised
r for the two-dimensional colour space is applied to
“colour”, will be referred to as Het sepHT-sepSB.
Finally, the combination of r:s, one for the shape
subspace and one for the colour subspace, when
optimised simultaneously with a heterogeneous rule -
will be referred to as Het simHTsimSB.

Table 2: Models, r:s and errors for average data.

R Err
Het simHTsimSB 1.55;2.25 2.146
Het sepHTsepSB 1.55;2.2 2.146
Het euceuc 2;2 2.339
Hom opt 1.2 2.481
Het eucdom 2;50 2.601
Het euccit 2;1 2.894
Het domeuc 50;2 3.838
Het domcit 50;1 3.905
Het citdom 1;50 3.948
Het citeuc 1;2 4.194
Het domdom 50;50 4.313
Hom cit 1 5.907
Hom euc 2 7.805
Hom dom 50 16.644

The candidate models evaluated and the errors for the
collapsed data are presented in Table 2 above.

A heterogeneous model combining a rule between the
city-block and the Euclidean metrics4 for the shape
space, and a rule roughly corresponding to the
Euclidean metric for the colour space (Het simHTsimSB
and Het sepHTsepSB), gave a lower error than the best
of the homogenous models (Hom opt), which had a r =
1.2, i.e. halfway between the city-block and the
Euclidean metrics. This was true irrespectively of if the
r:s were optimised separately or simultaneously. The
optimal heterogeneous Minkowski-r:s found were lower
for the shape space compared to the colour space.
However, the r:s found were slightly different from the
levels identified by previous research when two-
dimensional stimuli have been used. The values were
somewhat higher compared to what has been identified
for these spaces before. It may be the case that the r-
value goes up when the dimensionality increases. This
speculation makes sense considering that we have
limitations in terms of how many dimensions we can
process simultaneously, and that larger values of r
corresponds to focusing more on the dimension where
the stimuli-pair at hand differ the most.

The common homogenous Euclidean rule (Hom euc)
gave a substantially worse error than both the best
heterogeneous rule and the best homogenous rule.
However, the somewhat unequal weightings of the
dimensions defining the two subspaces (see above)
probably causes the peculiarity that Het euccit produces
an error lower than that for Het citeuc. The fact that
there are differences in weighting indicate that there are
differences in salience between dimensions.

In summary, a heterogeneous rule or model seems to
describe the data better compared to a homogenous one.

Errors and r:s were calculated also for the
heterogeneous rules combining the “odd”, or
counterintuitive, subspaces h/s and t/b on one hand and
h/b and t/s on the other. The heterogeneous models with
the lowest errors for the average data for each of the
three subspace divisions are presented in Table 3.

Table 3: Different subspace divisions and their errors.

Subspace division Model Err
height/tilt; sat./bri. Het simHTsimSB 2.146
height/sat.; tilt/bri. Het simHSsimTB 3.030
height/bri.; tilt/sat. Het simHBsimTS 2.861

The errors for the heterogeneous models for the
“odd” subspace divisions are considerably larger
compared to the error for the original division. For the

4 Note, however, that the Minkowsky-r of a rule giving
distances halfway between the city-block and the Euclidean
metric is not the intuitive 1.5, but rather approximately 1.2.



individual data, the corresponding difference was true
for 8 out of 12 cases with at least one r differing from
1.0. This difference indicate that the intuitive division
into subspaces of shape and colour makes sense.

Experiment II
In Experiment II, the heterogeneous r:s found were
larger than what has been found in earlier research. A
reasonable question is if the element of non-separability
together with the increased dimensionality causes such
effects. A second experiment was conducted in order to
investigate if integrality (non-separability) could be
eliminated as an explanation or not. Contrary to
Experiment I, the underlying dimensions in the present
experiment are purely separable.

Subjects
12 students (the majority were undergraduates) at the
University of Skövde participated for a reward of
cinema tickets roughly worth £11 or $17.

Stimuli
The stimuli varied in four dimensions, height (h), tilt
(t), width of a stripe parallel to the horizontal axes (st)
and brightness (b) of a parallelogram. These dimensions
differ from the ones used in Experiment I above in
some crucial aspects. One is that they do not form
intuitive subspaces. Another is that all possible pairs of
dimensions match the description of separable
dimensions.

Each dimension varied in three levels, h: (4, 5 or 6
units of length), t: (40, 50 or 60 degrees), st: (1, 2 or 3
units of width) and b: (40, 60 or 80% of maximum
brightness). The width, hue and saturation were held
constant (4 units of length, 240 degrees and 60% of
maximum saturation, respectively).

The same pairs (w.r.t. the numbers of the stimuli),
and order between pairs as in Experiment I were used.

Procedure
The experiment was conducted as Experiment I above.

Results
The average component distances for the collapsed data
in Experiment II (Table 4 below), are not perfectly
equal, especially the brightness dimension is weighted
less compared to the others.

Table 4: Average component distances and R2.

Avg_h Avg_t Avg_st Avg_b R2

2.089 2.381 1.530 0.625 0.541

The coefficient of determination is very low, hence a
general linear model does not apply well.

Spatial Metric The same candidate models as
evaluated in Experiment I were evaluated. The resulting
errors for the collapsed data are presented in Table 5.

Table 5: Models, r:s and errors for average data.

r Err
Het simHTsimSTB 1.1; 1 3.483
Hom opt 1 3.523
Hom cit 1 3.523
Het sepHTsepSTB 1.6; 1 4.010
Het citeuc 1; 2 4.213
Het euccit 2;1 4.434
Het citdom 1; 50 4.638
Het euceuc 2; 2 5.573
Het domcit 50; 1 5.885
Het eucdom 2; 50 6.185
Het domeuc 50; 2 7.234
Het domdom 50; 50 7.935
Hom euc 2 11.333
Hom dom 50 17.219

It is clear that the best rule, of the ones tested for, for
describing the collapsed data in Experiment II is close
to a city-block rule (Het simHTsimSTB (r=1.1;1), Hom
opt (r=1) and Hom cit). It is not, in this special case,
possible to view this as supporting either of
homogenous or heterogeneous models since the city-
block metric is the sum of the differences for the
constituting dimensions. Therefore, there is no
difference between a homogenous city-block rule and a
heterogeneous rule where city-block rules are used
within all subspaces.

As opposed to experiment I, the Minkowski-r values
(for the best models) did not increase in magnitude with
increased dimensionality.

The heterogeneous models with the lowest errors for
the average data for each of the three subspace divisions
are presented in Table 6. As, for the collapsed data, the
optimal “heterogeneous” rule for the “original”
subspace division was close to the city-block metric for
both subspaces, this was necessarily the case also for
the “odd” subspace divisions.

Table 6: Different subspace divisions and their errors.

Subspace division Model Err
height/tilt; str./bri. Het simHTsimSTB 3.483
height/str.; tilt/bri. Het simHSTsimTB 3.523
height/bri.; tilt/str. Het simHBsimTST 3.523

General Discussion
The aim of this paper is to investigate and communicate
the idea that division of features/dimensions of objects
into separate subspaces - when applicable - possibly
could increase descriptive power.



Experiment I involved pairs of dimensions previously
found to be combined best by the city-block and the
Euclidean metric, respectively. The Euclidean rule
turned out to badly describe the data. Instead, a
heterogeneous rule combining the two subspaces
formed by the intuitive division, was found to provide
the best description. The r:s for the two subspaces
found in this experiment rhymes with previous research
in that they really possess different metric properties
and that the r for saturation/brightness was higher than
for height/tilt. However, both r:s found were somewhat
larger compared previous findings for the separate two-
dimensional subspaces. The dimensions involved in
Experiment I were all expected to be pairwise
separable. Also in the four-dimensional case, the best
describing metric turned out to be the city-block rule.

The idea presented received support in that the
general pattern identified from the experiments is that
phenomenological dissimilarity can be more accurately
described with a heterogeneous rule taking aspects of
the stimuli into consideration, compared to a
homogenous Minkowski-metric.

There are a number of open questions. One relevant
issue is how the subspaces themselves should be
combined. In this paper, only one of many possible
ways was investigated. Another question concerns the
magnitudes of the r:s identified. Since the r:s estimated
in Experiment II were not larger compared to what
could be expected for pairwise combinations of the
constituent dimensions, it is apparent that the increase
in magnitude of r:s as found in Experiment I, is not
generalisable to all complex stimuli. However, it is in
the developmental literature well documented that the
separability changes with experience (see e.g. Smith,
1980), with the direction from integrality to
separability. This pattern also apply to short term
learning (Johannesson, 2001b). A possible reason for
the relatively large r:s in Experiment I could thus be
that stimuli with contents of integrality are harder to
“learn” than stimuli composed by separable dimensions.
If so, the r:s could possibly stabilise at a lower
magnitude for sufficiently experienced subjects. If not,
it could simply be that the specific metric properties
associated with integral/separable dimensions only are
true in the context of single pairs of dimensions, i.e.
depending on if they are combined or not. An
interesting set of stimuli that could be used in order to
explore this (and others) issue further is multimodal
stimuli composed of the pairwise integral dimensions of
pitch/loudness and hue/saturation.

The results presented clearly motivates further
research on the idea that information integration could
be described as a combination of distances within
different subspaces. More research on if, how and when
information integration behaviour can be described in
terms of combinations of subspaces may shed light on

how we interact with the inherently high-dimensional
real world. For example, Edelman & Intrator (1997)
discuss the necessity of low dimensionality for learning
in perceptual tasks - known as ‘the curse of
dimensionality’. However, even if we always use low-
dimensional representations internally, even for
cognition, if these representations involve more than
two dimensions, cognitive science have interesting
problems to solve.
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