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Abstract

A requirement of an information processing account of
human problem solving is that it includes a mechanism
by which people remember which goals and operators
have been evaluated and which still need to be evaluated.
One might expect that these are issues of such
fundamental importance that they must have been solved
or at least addressed by the two architectural accounts of
cognition (Soar and ACT-R), but in fact it is an issue that
is glossed in both. We identify two problems: (1) Soar
and ACT-R guarantee information about goals, and (2)
ACT-R combines measures of frequency and recency
into a single representation of activation. In this paper we
report a model of how people search simple binary trees.
The model demonstrates the cognitive plausibility of a
search algorithm that is supported by a memory system
that delivers independent estimates of frequency and
recency.

Introduction
A requirement of an information processing account

of human problem solving is that it includes a
mechanism by which people remember which goals and
operators have been evaluated and which still need to
be evaluated. Whether the task is the Tower of Hanoii,
a waterjugs problem, a world-wide web search problem
or a spatial navigation task, a person engaged in search
examines the consequences of applying an operator to a
state by trying it out and perceiving to which state it,
and subsequent operators, lead. At some point in the
future, the person may, through backup, or because of
loops, find themselves in a visited state. Recognition
that the state has already been visited and/or that the
operator has already been applied to this state, will in
the long-term help prune the search space and thereby
constrain the effort spent on attaining the goal. This
constraint has been used in a number of models of
human problem solving (Atwood & Polson, 1976;
Jeffries, Polson., Razran, & Atwood, 1977; Anderson,
1993; Howes, 1994). Atwood & Polson's model of
human performance on the waterjugs problem, built up
a representation of the 'familiarity' of states that was
factored into the operator selection process. The more
familiar an operator then the less likely it was to be
selected.

One might expect that these are issues of such
fundamental importance that they must have been
solved or at least addressed by the two substantial
architectural accounts of cognition (ACT-R, Anderson,
1998; Soar, Newell, 1990), but in fact it is an issue that
is glossed in both. In Soar, the architecture
automatically ensures that operators that have already
been applied to a particular state in pursuit of a
particular goal (on the goal stack) on a particular trial
will not be reselected. In ACT-R the goal stack has
privileged status. Items posted on the stack are not
subject to the constraints of memory, i.e. they do not
have decaying activation and cannot therefore be
forgotten (Altman and Trafton, 1999).

Another resource for supporting decisions about
which operator to apply is memory for previous
attempts at a goal (either successful or failed). If a goal
has been achieved prior to the current attempt then
memories that indicate that an operator is familiar may
be taken as evidence that it is more likely to lead to the
goal than an unfamiliar operator (Payne, Richardson,
Howes, 2000). However, an issue for the problem
solver is how to determine the source of the familiarity.
If the source is the current trial then the operator should
be rejected, if it is a previous trial then perhaps it should
be selected.

Payne, Richardson, Howes (2000) investigated the
role of familiarity (Jacoby, 1991) in controlling
interactive search. They tested the hypothesis (Aasman
& Akyurek, 1992; Howes, 1994) that people help
control search merely by recognising the actions that
have been tried before and found that the familiarity of
items could affect decisions about which item to select.
Moreover familiarity was used strategically. When
participants had information indicating that familiarity
would be more likely to indicate that an operator would
lead to the goal, they were more likely to use familiarity
to guide selection.

Again, one might expect that this issue would have
been addressed in architectural theories of cognition.
However, while Soar’s chunking mechanism is flexible,
the issue of whether it can provide a mechanism for
representing the episodic familiarity of an operator has
only recently started to be explored (Altmann and John,
1999). The situation for ACT-R is more complex.



In ACT-R, each chunk stored in declarative memory
has an activation that is used to determine probability of
retrieval. This activation is made up of a base-level
activation and an associative activation. Anderson and
Lebiere (1998; page 70) state: “... the activation of a
chunk is a sum of the base-level activation, reflecting
its general usefulness in the past, and an associative
activation, reflecting its relevance to the current
context,” and, “The base-level activation of a chunk
represents how recently and frequently it is accessed.”

Importantly however, the frequency and recency
components of base-level activation are not
independently inspectable by the production rules and it
is not therefore possible to write ACT-R production
rules that make strategic use of frequency and recency
information stored as components of chunk activations.
It seems unlikely therefore that it is possible to write
productions that, for example, prefer the most frequent
operators at the expense of the most recent.

A commonly used solution to this in ACT-R models
has been to use flags on declarative memory structures.
A flag is added to operators that have been applied on
this trial and then all flags are wiped at the end of the
trial (Anderson's model of navigation 1993; Lebiere,
personal communication) leaving no episodic evidence
that they had ever been there. While, this is an extra-
architectural mechanism that, unsurprisingly, is not
claimed as part of the theory, its use undermines the
claim that models constructed in ACT-R are subject to a
principled set of memory constraints.

In this paper we report a computational level model
of how people search simple binary trees. The model

makes strategic use of frequency and recency
information and demonstrates the cognitive plausibility
of a search algorithm that is supported by a memory
system that delivers independent estimates of frequency
and recency.

Task
In a series of studies to be reported elsewhere we

observed participants searching simple binary word-
mazes. Each maze was a binary tree structure with a
depth of 5 nodes. At each choice point participants
were presented with three buttons on a computer
display. Two buttons at the top and bottom of the right
of the screen were labelled with different words
(perhaps ‘gun’ and ‘pistol’) and the other button, on the
left of the screen, was labelled ‘back’. Selection of one
of the two buttons on the right changed the current state
to a state nearer to the leaves of the tree and selection of
‘back’ moved the state to a node nearer the root of the
tree. Participants were asked to search for a leaf node
with a given label (a random word).

Observations:
• All participants were able to complete these

search tasks.
• Three strategies were used:

oRandom search with a forward bias.
Participants selected either the top or the
bottom button on the right of node X,
searched the subtree and then on returning to
X selected the other button.

Figure 1: Mean number of actions taken by high and low systematicity participants
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oSystematic search. Participants always
selected the top button on the first visit to
node X, searched the subtree, and then on
return to X selected the bottom button.

oMemory-based search. On trials after the
first participants generally attempted to
remember the correct path.

• On trials after the first, participants flexibly
interleaved search based on memory for
previous trials with, when memory for
previous trials failed, either systematic or
random search.

• None of the participants perseverated, i.e. they
did not repeatedly search the same incorrect
subtree more than a handful of times.

• With practice (about 4 trials) all participants
were able to follow the correct path with
relatively few errors (Figure 1).

• Those participants who used a systematic
strategy were significantly more efficient than
those who did not. On the first trial the
variation in the performance of the systematic
participants was less than the variation in the
performance of the random participants.
(Unfortunately, the statistically significant
difference in efficiency between the use of the
two strategies is not reflected in Figure 1. This
is because some participants using the random
strategy can, luckily, find the goal with
relatively few actions.)

Model
The first model that we built relied on a single

activation-based measure that combined both frequency
and recency information. This model could perform the
first trial of a task by avoiding operators with high
activation (those inferred to have been selected recently
or frequently). However, on subsequent trials, a
strategy of preferring operators with a higher activation
(i.e. the ones used most recently on the previous trial or
the ones used most frequently over trials) proved to be
fragile. Activation may be high either because an
operator was selected many times incorrectly or
because it was selected more recently (i.e. closer to the
achievement of the goal). Worse, if an error is made
because an algorithm prefers highly active operators,
then the algorithm may perseverate ad infinitum on
incorrect selections.

The model that we focus on in this paper, is an
extension of a proposal by Payne, Richardson, Howes
(2000). It relies on the separate and strategic use of
information about the frequency and recency of
operator usage. The model is not based on assumptions
about the structure of memory, rather it is based on
assumptions about what information memory can
deliver. The heuristics that define the search algorithm
rely on the following functions for acquiring
information from memory:

• F = frequency( I ) - returns an estimate of the
frequency F of item I.

• X = most_recent( P ) - Instantiates pattern P
to its most recent occurrence. (e.g.
most_recent( op ) would bind X to the most
recently tried operator). Only one value can be
returned for a particular P.

• F = freq_before( I, E ) - returns the frequency
F of I before the most recent occurence of
event E. (e.g. to give the frequency of an item I
before the selection of the current goal.)

• F = freq_after( I, E ) - returns the frequency F
of I after event E.

In order to simulate a lack of reliability in the
information returned by these functions, frequency and
recency information decayed from memory
stochastically. Also, false positives were randomly
generated in answer to queries about whether operators
had been applied on this trial. In the Payne,
Richardson, and Howes (2000) experiment, false
positives occurred when participants were forced to
make a decision about whether or not they had applied
an operator before. In fact, participants may have only
seen the operator and not applied it. The functions
that determined the rate of decay and false positives are
not important for our current purposes.

The purpose of introducing the errors was not to
capture some quantitative aspect of the data but instead
to ensure that the search algorithm was robust given the
return of incorrect information from memory. Most
importantly the algorithm should not perseverate
implausibly even when degraded information is
returned from memory.

The heuristics work by adding to a preference value
for each operator proposed. There are three sets of
heuristics: those that switch algorithm (or strategy);
those that control systematic search; and those that
control frequency-based search.

Given goal G, operator Op and a preference constant
V, the rules for each algorithm are described below.
The rules depend on memory encodings of the
frequencies and recencies of associations, in general
between G and Op, but for clarity. a short-hand has
been used to describe the rule conditions, which does
not refer to the association per se, but instead just to Op.
Each rule proposes an addition (plus) or a subtraction
(minus) to the current value of the preference for Op.
The rules are described in a pseudo-code where
variables are represented with capitals. The symbol ‘=’
indicates a test of equality. If the test has a variable on
either side and the variable is not already bound then
the test will result in binding. The variables TOP and
BOTTOM are respectively bound to the top and bottom
forward menu selections.

Rules 1 to 5 describe the memory-based algorithm.
This algorithm is used if the model has a memory



indicating that the goal has been achieved before.
Rules 6 and 7 describe the random algorithm. Rules 8
to 10 describe the systematic algorithm. (A particular
instantiation of the model uses either the random or the
systematic rules but not both.) Finally, rule 11 switches
to the memory algorithm and rule 12 restarts a search in
the case of apparent exhaustion (this is described
further below).

There is only space to describe some of these rules
here. We will focus on those for the systematic
algorithm. Rule 8 says, if the most recent algorithm is
systematic and the operator (Op) being evaluated is a
forward operator at the top of the screen, and the most
recent of the previously applied operators (R) was not a
‘back’ operator THEN add V to the preference for Op.
Rule 9 is similar to rule 8 but adds a preference for the
forward operator at the bottom of the screen if the
previous operator was a backup, Lastly, rule 10 prefers
the back operator when the bottom operator has been
tried on this trial and the most recent previous operator
was also a back.

1. IF most_recent(algorithm) = A,
A = use_memory,
forward(Op) = true,
freq_after(Op,A) = 0,
freq_before( achieved(G), A ) = FG,
freq_before( Op, A ) = FO

THEN P becomes plus( 1 / (1 + abs( FO – FG ) * V ) )

2. IF most_recent( algorithm ) = use_memory,
forward( Op ) = true,
freq_before( fail( Op ), now ) = FN

THEN P becomes minus( FN * V ).

3. IF most_recent( algorithm ) = A,
A = use_memory,
forward( Op ) = true,
freq_after( Op, A ) = 0,
freq_before( Op, achieved(G) ) = OF,

THEN P becomes plus( OF * V ).

4. IF most_recent( algorithm )=A, A= use_memory,
forward( Op ) = true,
freq_after( Op, A ) = 0,

THEN P becomes plus( V ).

5. IF most_recent( algorithm )=A, A= use_memory,
back( Op ) = true,
freq_after( TOP, A ) > 0,
freq_after( BOTTOM, A ) > 0,

THEN P becomes plus( V ).

6. IF most_recent( algorithm ) = A, A = random,
forward( Op ) = true,
freq_after( Op, A ) = 0,

THEN P becomes plus( V ).

7. IF most_recent( algorithm ) = A, A = random,
back( Op ) = true,
freq_after( TOP, A ) > 0,
freq_after( BOTTOM, A ) > 0,

THEN P becomes plus( V ).

8. IF most_recent( algorithm ) = systematic,
forward( Op ) = true, top( Op ) = true,
most_recent( op ) = R, not( back( R ) = true ),

THEN P becomes plus( V ).

9. IF most_recent( algorithm ) = A, A = systematic,
forward( Op ) = true, bottom( Op ) = true,
most_recent( operator ) = R,
back( R ) = true,
freq_after( Op, A ) = 0,

THEN P becomes plus( V ).

10. IF most_recent( algorithm ) = A, A = systematic,
back( Op ) = true,
most_recent( operator ) = R,
back( R ) = true,
freq_after( BOTTOM, A ) > 0,

THEN P becomes plus( V ).

11. IF most_recent( algorithm ) = A, A = none,
freq_before( achieved(G), A ) > 0,
Op = algorithm( use_memory ),

THEN P becomes plus( 3*V ).

12. IF current_node = root ,
most_recent( algorithm ) = A ,
Op = algorithm( A ),
freq_after( TOP, A ) > 0,
freq_after( BOTTOM, A ) > 0,

THEN P becomes plus( 3*V ).

The last algorithm switching rule (rule 12) plays a
crucial role. Occasionally the problem solver will return
to the root node without having found the goal. This
will happen if the search was incomplete (i.e. some
subtree remained unsearched) due to inadequate
information from memory (a false positive). In this
situation rule 12 restarts the search. In the model this is
operationalised as the operator for the current algorithm
is reapplied. The time at which the most recent
algorithm operator was applied is used by the other
rules to judge whether memories for operator
applications were part of the current trial or previous
trials.

Results
For particular rates of memory decay and false

positives, the model was run 40 times on each of the 4
tasks performed by participants. The resulting mean
performance for three decay rates is shown in Figure 2.



The participants’ mean performance is within the
bounds of the best and worst model performance
illustrated in Figure 2. We have not attempted to fit the
model precisely, rather in accordance with Roberts and
Pashler (2000) we explored the range of its behaviour.

Importantly, the model did not perseverate.
Regardless of errors made during search, it always
recovered and eventually found the goal. Also, as the
decay rate increased the model was still able to learn
the task. A large number of errors in the first trial did
not on average incapacitate the learning over
subsequent trials.

The gradual improvement in practice after the first
trial was a result of a search algorithm (rules 1 to 5) that
is guided by a combination for memory for previous
trials and the current trial. If memory for previous trials
proved inadequate then memory for the current trial, as
distinguished by relative recency, ensured a reasonably
efficient search.

Also, in accordance with the participants behaviour,
the systematic algorithm produced more efficient and
less varied searches on trial 1.

Discussion
The model reported here demonstrates that aspects of

the way in which people search and learn paths through
external problem spaces can be captured with heuristic
rules that make strategic use of independent estimates
of the frequency and recency of previously selected
operators. Without access to this information it is
impossible to write heuristics that distinguish an
operator with high frequency from one that has high
recency, and it is therefore a problem to determine

whether key events occurred on the current trial or
previous trials. The analysis of the model’s behaviour
under a range of memory decay and false positive
conditions reveals that it produces behaviour broadly
similar to human performance on a simple search task.
Notably, unlike previous activation-based models built
by the authors, the model does not perseverate when
receiving degraded information from memory. In
addition, the mean performance of the model over ten
trials consists of a practice curve similar to that of the
participants.

However, further investigation revealed that, after the
first trial, the model produced a much greater variation
in behaviour than the participants in the experiment.
This issue is a matter for further investigation, and may
well imply the need for some superordinate learning
mechanism (perhaps rehearsal or impasse-driven
learning).

A superordinate learning mechanism might involve
the deliberate encodings of what the correct option is.
This is an approach that was explored in Howes (1994),
and while it deserves further attention, there are two
problems. The first is that there is a dislocation in time
between when the items are experienced and when a
participant achieves the goal. In previous models the
feedback of information about correctness produced
recency effects in which lower levels of the tree were
learnt first (Howes, 1994). These effects were not
observed in our experiments. The second is that
deliberate learning only pushes the problem back one
level. If people deliberately learn what is correct then
when situations change or mistakes are made, they also
have to deliberately learn that a different option is

Figure 2: Mean number of actions taken by model given increasingly unreliable information from
memory
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correct. Subsequent competition between different
representations of correctness would then have to be
resolved, perhaps using exactly the kind of mechanism
that we have proposed. Progress will require modelling
the range of individual trial data rather than just mean
data.

Another possibility that we are investigating is that
the long-term learning is based on recency and not
frequency. Once the goal has been achieved, then the
operator that led to the goal will be the most recently
selected operator at any choice. Memory for recency
could therefore be used to guide learning. However,
under normal assumptions about decay, a recency-based
model predicts that choice points at different distances
from the goal would be learnt at different rates. Our
data (not described above) does not support this
prediction.

In principle, it may be possible to construct
algorithms in ACT-R designed to ensure that during
search sufficient episodic information is stored in
declarative chunks to enable the kinds of computations
that are posited in the model report here (e.g. Altmann
and Trafton, 1999). However, regardless of the success
of this approach, there will remain an issue about how
people obtain information about frequency, and
recency. While the concept of activation is well
established in psychology, an architecture in which
chunks are stored with independent measures of
frequency and recency may lead to more parsimonious
accounts of problem solving behaviour.

There are a number of models of the cognitive
activity that give rise to practice effects, amongst them
Logan's (1988) instance model and Rosenbloom and
Newell’s (1981) chunking model. More recent work has
emphasised the strategy specific nature of the practice
curves (Delaney, Reder, Staszewski & Ritter, 1998).
The model reported here is similar to Logan's in that the
practice curve emerges as a result of encodings made
from experience with the external environment:
however, maze-like tasks are more complex than simple
letter arithmetic tasks and it is for this reason that our
model requires the combination of frequency and
recency dependent control mechanisms that we have
described.

In the introduction we claimed that ACT-R’s
representation of undifferentiated activations was not
sufficient to directly support algorithms that capture the
behaviour of people engaged in typical search tasks. In
contrast, the model that we have reported illustrates the
cognitive plausibility of a mechanism that makes
strategic use of separate sources of operator recency and
frequency during search.
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