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Abstract

Biological organisms display an amazing ability during
their ontogenetic development to adaptively develop so-
lutions to the various problems of survival that their en-
vironments present to them. Dynamical and embodied
models of cognition (Clark, 1997; Edelman & Tononi,
2000; Franklin, 1995; Freeman, 1999a, 1999b; Freeman
& Kozma, 2000; Freeman, Kozma, & Werbos, 2000;
Hendriks-Jansen, 1996; Kelso, 1995; Kozma & Free-
man, 2001; Port & van Gelder, 1995; Skarda & Free-
man, 1987; Thelen & Smith, 1994) are beginning to of-
fer new insights into how the numerous, heterogeneous
elements of neural structures may self-organize during
the development of the organism in order to effectively
form adaptive categories and increasingly sophisticated
skills, strategies and goals. In this paper we present mod-
els of ontogenetic development built on neurologically in-
spired, bottom-up, dynamic approaches to embodied cat-
egory formation such as those done by Freeman (1975,
1999b), Freeman and Kozma (2000), Kozma and Free-
man (2001), Verschure and Voegtlin (1999) and Edel-
man (1987), Edelman and Tononi (2000). We believe that
building on such mechanisms from an embodied dynam-
ical perspective will produce autonomous agents that dis-
play greatly increased flexibility in their behavior. Such
models will represent a better understanding of how the
brains of biological organisms not only form perceptual
categories of their environments during development, but
also develop effective patterns of behavior through the dy-
namic self-organization of neurological patterns of activ-

ity.

Introduction

Biological organisms develop effective behaviors sim-
ply by perceiving and acting upon their environment in
real time. Their learning is always guided by their basic
needs. Through their experience with the environment,
they begin to embody, anticipate and exploit the regu-
larities of their ecological niche in the service of their
intrinsic needs. Some models of learning and develop-
ment for autonomous systems are beginning to display
some of these properties. (Almassy, Edelman, & Sporns,
1998; Edelman et al., 1992; Freeman & Kozma, 2000;
Kozma & Freeman, 2001; Verschure, Krose, & Pfeifer,
1992; Verschure, Wray, Sporns, Tononi, & Edelman,
1995) These abilities include the formation of embodied,
organism significant categories through experience; the
development of active searching and anticipation of rele-
vant stimuli; the development of a repertoire of skills, or

action loops, for the effective transformation of environ-
mental problems and the exploitation of environmental
regularities in the service of intrinsic needs.

In this paper we will present some of the most im-
portant properties of dynamical and embodied cognition.
We will also discuss the properties of ontogenetic devel-
opment of skills, strategies and goals in biological organ-
isms that make it a particularly powerful mechanism of
learning. We will look at examples of existing systems
that display properties of dynamical and embodied cog-
nition. And finally we discuss our own plans for creating
models of the ontogenetic development of behavior in
autonomous adaptive systems.

Embodied Cognition

Embodied cognition is an emerging viewpoint in cog-
nitive science that emphasizes many differing aspects
from the standard cognitive hypothesis (Clark, 1997;
Hendriks-Jansen, 1996; Pfeifer & Scheier, 1998). In the
standard view of cognition, the mind is the product of the
manipulation of symbolic representations of the problem
in order to produce solutions and generate intelligent be-
havior (Johnson-Laird, 1988; Newell & Simon, 1972,
1976; Newell, 1990). The environment is perceived and
transduced into symbolic representations. These sym-
bols encode the current state of the environment and the
problem to be solved. They can be manipulated, inde-
pendent of the environment, to discover solutions to the
problem and produce intelligent behavior for the organ-
ism.

In an embodied view of cognition, intelligence in bi-
ological organisms does not arise through the static ma-
nipulation of amodal symbols and representations. In-
stead, organisms are seen to be embedded in their envi-
ronments in fundamental ways. Through their real time
experiences with their bodies and environments, they be-
gin to embody the salient aspects of situations in ways
that guide future perception and behavior towards im-
proved performance. Experience with their ecological
niche develops expectations of the environmental regu-
larities that are of benefit to the intrinsic needs and de-
sires of the organism. The organism actively learns to
seek out expected stimuli that are relevant to the desires
and needs of the organism at a particular moment.

There are many concepts associated with an embodied
perspective of cognition. We will briefly present some of



the more important concepts in the next sections.

Embodied Organisms are Complete Organisms

Biological organisms are currently the only examples ca-
pable of producing a full range of intelligent, adaptive
behavior. Standard views of cognition place no special
emphasis on the fact that these natural examples of cog-
nition are complete organisms. In the standard view of
cognition, it seems plausible that by connecting together
many specialized subsystems that solve problems in lim-
ited, specialized domains, eventually a complete intelli-
gence will be produced.

From an embodied perspective, we are not likely to
understand natural cognition from such a piecemeal ap-
proach to studying and building systems. Instead, we
must examine and build complete cognitive systems.
In this context, complete refers to systems that are au-
tonomous and adaptive. Autonomous systems are those
that have certain intrinsic needs, and that are able to pro-
duce behavior that is capable of satisfying those needs
consistently over time. Pfeifer (Pfeifer & Scheier, 1998)
characterizes autonomy as the ability of the organism to
maintain its critical, intrinsic values within a zone of vi-
ability. This is often referred to as “homeostasis”. Adap-
tivity refers to organisms that are capable of modifying
their behavior so that they can more efficiently maintain
their critical parameters in their zones of viability.

Studying complete cognitive systems is important for
several reasons. Classical approaches to modeling cog-
nition often tackle toy problems in limited domains. The
hope is that the techniques developed can then be scaled
up to the full problems of cognition. This approach to
studying cognition has failed to produce clear insights
into how such methods could eventually be scaled up.
Embodied cognition, with its emphasis on complete sys-
tems, maintains that the answer is not to start with toy
environments. Instead we should begin by studying sim-
ple, but complete, organisms, in more realistic environ-
ments (Brooks, 1990; Pfeifer & Scheier, 1998). Only
complete organisms are capable of developing embodied
representations and displaying intentional behavior.

Active, Action-Oriented Representations

Another important difference of embodied and classical
perspectives concerns the nature of the representations
developed and used by the organism. In a classical per-
spective, symbols are seen as passive structures that are
syntactically manipulated to produce solutions. In an
embodied perspective, representations are much more in-
timately tied to the intrinsic needs of the organism. Clark
(1997) calls such structures action-oriented representa-
tions. Action-oriented representations are not passive
representations of the state of the environment as it exists
at some time. They are continuously updated from sen-
sory information, and they continuously prescribe pos-
sibilities for action. Gibson (1979) has called this the
concept of affordances, where the representations afford
opportunities for action for the organism.

The World Represents Itself

Classical models of cognition often experience an expo-
nential explosion of computational power as the environ-
ment increases in complexity. An embodied approach
to cognition avoids this problem because it advocates
the use of simple, cheap, action-oriented representations.
From an embodied perspective, it is better to use cheap
and active sensing to inform oneself of the state of the en-
vironment, rather than building complex representations
of the environment. Brooks (1995) states this principle
as “the world is its own best model”. Embodied cogni-
tion avoids the use of costly and detailed representations.
Cheap, quick, active, specialized sensing of the environ-
ment is preferred. Instead of maintaining a complex rep-
resentation of the state of the environment, we simply di-
rect specialized sensory apparatus to directly perceive the
information required for behavior. This approach helps
keep the need for computation from exploding in com-
plex environments.

Emergence of Solutions through Collective
Activity

A key concept of embodied cognition is the emergence
of solutions from many parallel, distributed activities. In
an embodied perspective, intelligence is seen as emerg-
ing from the parallel activity of many cooperating and
competing processes. As in connectionist models, par-
allel emergence of solutions provides many benefits to
the behavior of the system. Such emergent solutions are
robust and resistant to damage; tolerant of noisy, incom-
plete data; satisfy general goals and yet are variable and
context dependent. They are also fast, able to produce
solutions easily in real time demanding environments.
Unlike most classical connectionist modeling, embod-
ied cognition views recurrent, non-linear interactions as
a crucial property in the emergence of solutions.

Developing Within the Environment

The emergence of solutions through many parallel pro-
cesses is not simply a product of the non-linear interac-
tions of components in the organism’s brain. Intelligent
behavior also emerges as the product of the interaction of
simple behaviors with a complex environment. Simple,
instinctive behaviors are seen as intelligent when they
are coupled with local environmental cues (Braitenberg,
1984). Development of action-oriented representations
aids in this process. Organisms learn simple actions that,
when coupled with appropriate learned stimuli, yield in-
telligent, purposeful behavior.

Clark (1997) says that embodied minds use extensive
external scaffolding. The ecological niche of the or-
ganism provides many consistent cues for intelligent be-
havior. Most intelligent behavior in natural organisms
involves the fast recognition and exploitation of such
opportunities, not in complex planning and reasoning.
Also, most organisms tend to offload complex planning
and reasoning tasks onto the environment. They do this
by allowing the state of the environment to represent the



progression of the problem solving task. One example,
given by Rumelhart, McClelland, and The PDP Research
Group (1986), is in the behavior of people when mul-
tiplying large numbers. Most people can instantly rec-
ognize and produce the answer to simple, single digit
multiplication problems, of the type 7 x 7 = 49. How-
ever, when given the task of multiplying large numbers
together, say 4356 X 1897, they invariably resort to pen-
cil and paper, or even a calculator. People do not com-
pute large chains of complicated reasoning and logic. In-
stead they offload the representation of the progress of
the task onto the environment by maintaining the state
of the problem solving task with environmental cues. In
this case, people make marks on paper (the environment)
to keep track of their problem solving progress, while re-
ducing the problems to those simple ones that they can
directly recognize and solve. Embodied cognition sees
this type of external scaffolding not as simply useful,
but as a prevalent and pervasive method used by cog-
nitive systems to reduce computational complexity and
perform problem solving tasks in real time.

Better Imperfect than Late

Biological cognition is exemplified by fast pattern com-
pletion. It has evolved to produce behavior in real time.
The behavior does not necessarily have to be perfect, so
long as it is good enough for the continued survival of
the organism (at least until the next crisis occurs). Or-
ganisms are continually presented with threats and dan-
gers that must be handled immediately in order to ensure
their survival. Such requirements do not favor solutions
that take large amounts of time. Natural cognition seems
to be built upon a foundation of fast pattern recognition
and behavior generation keyed to threats and opportuni-
ties for action. The embodied cognitive viewpoint recog-
nizes this fundamental feature of natural cognitive sys-
tems. According to Port and van Gelder:

”The cognitive system is not a discrete sequen-
tial manipulator of static representational structures;
rather, it is a structure of mutually and simulta-
neously influencing change. Its processes do not
take place in the arbitrary, discrete time of computer
steps; rather, they unfold in the real time of ongo-
ing change in the environment, the body, and the
nervous system. (Port & van Gelder, 1995, pg. 3)”

The Dynamics of Development

The ontogenetic development of behavior provides a
powerful mechanisms by which organisms learn to or-
ganize effective patterns of behavior for performing the
necessary tasks of survival. There are many properties
of this type of development. It is fundamentally a self-
organizing process, in which the constraints of body and
environment guide the system towards discovering cer-
tain patterns of behavior. Development of behavior in
organisms is not so much a process of finding complex
chains of effective behaviors, but in finding salient per-
ceptual cues and effective manipulations that simplify

and transform the task environment into problems that
are directly recognizable and solvable. Problem solving
in natural cognitive systems is more often the application
of many transformations until the problem is sufficiently
simplified to be directly solved. Clark (1997) calls such
phenomena action loops. Kirsh and Maglio (1994) call
actions that are primarily performed to transform and
simplify the task environment epistemic actions.
Problem solving behavior in biological organisms
does not tend to be encoded as static, procedural steps.
Instead, organisms develop a wide repertoire of action
loops and epistemic actions. Development of behav-
ior takes the form of learning more and better action
loops for the effective manipulation and transformation
of problems. As an organisms repertoire of action loops
grows, they become better able to deal with a wide va-
riety of subtle differences in the problems they need to
solve. Their solutions become both robust and efficient
with experience in problem solving in the environment.

Development of Embodied Cognition

Thelen and Smith (1994), Thelen (1995) envision the de-
velopment of behavior in cognitive systems as an onto-
genetic landscape of stable and unstable attractors and
repellors. As the body of the organism changes, new op-
portunities for behavior are created and destroyed. De-
velopment is seen as a reduction of the degrees of free-
dom of the system as useful patterns for solving prob-
lems are discovered. As stable solutions to problems de-
velop, these in turn change the ontogenetic landscape,
opening up new opportunities for some behaviors, and
closing off opportunities for others. Development is the
discovery of stable patterns of behavior, given the current
constraints of the body and the environment.

Natural cognitive systems display both physical and
behavioral development. Physical changes in a matur-
ing organism are continually reshaping the ontogenetic
landscape, destabilizing previously stable solutions, and
forcing the system into finding new patterns of behavior.
Natural cognitive systems also display this flexibility in
the development of behavior for problem solving. Se-
quences of behaviors are not learned so much as behav-
iors that change the state of the environment and thus cue
the next behavior in the sequence.

Self-Organization of Behavior

Theories of the self-organization of patterns in nonequi-
librium systems provide new insights into the creativity
and flexibility displayed by biological organisms (Kelso,
1995). Many of the desirable properties of development
in biological organisms make sense only in view of non-
linear dynamics. According to Kelso:

“The thesis here is that the human brain is fun-
damentally a pattern-forming self-organized system
governed by nonlinear dynamical laws. Rather than
compute, our brain dwells (at least for short times)
in metastable states: it is poised on the brink of in-
stability where it can switch flexibly and quickly.



By living near criticality, the brain is able to an-
ticipate the future, not simply react to the present.
(Kelso, 1995, pg. 26)”

The development of problem solving behavior in bi-
ological organisms displays these important properties.
Solutions are developed that are flexible, efficient and
quick. Such systems are not simply reactive, they learn
to anticipate and actively seek out future stimuli.

Bottom Up Neurological Models of
Categorization and Action

Some systems have been developed that display prop-
erties of dynamic and embodied cognition as discussed
above. In this section we present four interesting ex-
amples of research that display dynamic, self-organizing
category formation and development of behavior. These
are all examples of systems that have been built us-
ing neurologically inspired, intermediate level neural dy-
namics.

Distributed Adaptive Control

Distributed Adaptive Control, or DAC (Pfeifer & Ver-
schure, 1992; Pfeifer & Scheier, 1998; Verschure et al.,
1992; Verschure & Voegtlin, 1999) is an example of a
model of learning based on large scale neural dynamics.
At its heart, DAC is a model of classical conditioning,
or the learned association of a response to a conditioned
stimuli. In the DAC model, there are three levels of con-
trol: reactive, adaptive and reflective control.

The reactive level is prewired in the model, and rep-
resents the intrinsic values of the autonomous agent. In
the case of DAC, the robot instinctively turns away from
things when it bumps into them. This represents the
value of avoiding damage from collisions with the envi-
ronment. In addition to a collision sensor, a special sen-
sor for target acquisition is present. DAC is hardwired to
move towards the target when it is detected by the target
Sensor.

The next level is the adaptive control layer. In this
layer representations of the states of long range sensors
are slowly associated with events that happen in the re-
active control layer. So, for example, the system will
learn to avoid collisions by associating the profiles of ob-
jects sensed with the long range sensor to collisions and
the subsequent activation of avoidance behavior. DAC is
also capable of learning and exploiting the regularities of
the ecological niche it finds itself in. So, if targets are
always found behind openings in walls, DAC is capable
of learning this association and begins to search out such
openings since they tend to lead to finding the targets in
the environment.

The final layer of DAC is the Reflective control
layer. At this level sequences of actions are formed and
remembered through developing sequential representa-
tions. This level represents the addition of long term
memory to the basic mechanisms of adaptive learning.

DARWIN

DARWIN (Almassy et al., 1998; Edelman, 1987; Edel-
man et al., 1992; Edelman & Tononi, 2000; Sporns,
Almassy, & Edelman, 1999; Verschure et al., 1995) is
another neurologically inspired model that is capable of
learning and developing representations simply by inter-
acting within its environment. At the heart of Edelman’s
DARWIN systems is the classification couple. In a clas-
sification couple, two maps of neuronal groups receive
input from separate sensors. The two maps are wired to-
gether with many reentrant connections. As a result of
reentrant coupling and the change of synaptic strengths,
corresponding classification patterns begin to be asso-
ciated and mutually activate one another in the maps.
Thus, for example, the feel (tactile map) and shape (vi-
sual map) of an object become functionally correlated
through repeated experience with the objects in the envi-
ronment. The correlated patterns of activity in the maps
represent coordinated properties of objects encountered
within the environment.

DARWIN III is capable of self-organizing categories
of objects that it encounters in its environment, and of
learning appropriate behavior patterns. DARWIN is ca-
pable of learning to track moving objects in its environ-
ment and also of directing its manipulator in a targeted
manner in order to manipulate its environment. DAR-
WIN III is also capable of adaptive learning of behavior,
like DAC. It learns to associate visual properties of desir-
able and undesirable objects, to the feel of the object. As
it gains experience in the environment, it no longer needs
to touch a bad object in order to avoid it. It has formed
associations between the visual and tactile maps, and it
begins to avoid undesirable objects upon seeing them.

KIII: Mesoscopic Dynamics

The discovery that brain dynamics operate in chaotic do-
mains has profound implications for the study of higher
brain function (Skarda & Freeman, 1987). A chaotic sys-
tem has the capacity to create novel and unexpected pat-
terns of activity. It can jump instantly from one mode of
behavior to another, which manifests the fact that it has
a collection of attractors, each with its basin, and that
it can move from one to another in an itinerant trajec-
tory. It retains in its pathway across its basins a history,
which fades into its past, just as its predictability into
its future decreases. Transitions between chaotic states
constitute the dynamics that we need to understand how
brains perform such remarkable feats as abstraction of
the essentials of figures from complex, unknown and un-
predictable backgrounds, generalization over examples
of recurring objects never twice appearing the same, re-
liable assignment to classes that lead to appropriate ac-
tions, and constant up-dating by learning.

The KIII model (Freeman & Kozma, 2000; Kozma &
Freeman, 2001) consists of various sub-units; i.e., the
KO, KI, and KII sets. The KO set is a basic process-
ing unit, and its dynamics is described by a 2nd order
ordinary differential equation. By coupling a number of
excitatory and inhibitory KO sets, KI(e) and KI(i) sets



are formed. Interaction of interconnected Kl(e) and KI(i)
sets forms the KII unit. Examples of KII sets in the ol-
factory system are the olfactory bulb, anterior olfactory
nucleus and prepyriform cortex. Coupling KII sets with
feed-forward and feedback connections, one arrives at
the KIII system.

KIII shows very good performance in learning input
data and it can generalize efficiently in various classi-
fication problems. KIII has a high dimensional chaotic
attractor in the basal state. It can be destabilized by
sensory stimuli and switched to a lower dimensional at-
tractor wing that represents a previously learned memory
pattern.

Basic Intentional System: The Limbic System

We consider biological organisms to be behaving intel-
ligently when they act in ways that will enhance their
current and future survival. The behavior exhibited by
biological organisms is often very creative and flexible.
Yet such behavior is always directed towards the satisfac-
tion of the basic needs of the organism. Freeman (1999a,
1999b) describes such behavior as intentional behavior.
Intentionality provides a key concept that links the neu-
rodynamics of brains to goal-directed behavior.

One of the primary acts of intentional behavior is in
directing sensory observation in expectation of informa-
tion to guide future actions. Both the formation of ex-
pectations and the real time dynamic interaction of the
organism with the environment are important principles
of intentional behavior. Freeman’s view of the mecha-
nisms of intentionality is one of nonlinear dynamic in-
teraction of heterogeneous neural elements on many lev-
els and time scales. The neurodynamic architecture of
the brain forms many recurrent loops between brain and
brain, brain and body, and organism and environment.
But the basic architecture of intentional behavior can be
found in the simplest and phylogenetically oldest parts
of biological brains: the limbic system.

Conclusion and Future Directions

In this paper we have presented an overview of the dy-
namical and embodied cognitive hypothesis. We have
also given an overview of some systems that display
category formation and developmental learning of the
type we are interested in. We have begun work on our
own models of the ontogenetic development of behav-
ior in autonomous systems (Harter & Kozma, 2001a,
2001b). Our own models emphasize the development of
action-oriented representations that afford opportunities
for action-loop like interactions between the agent and
the environment. Such models are based upon the for-
mation of embodied categories from chaotic non-linear
dynamics.

We begin with bottom-up neurological models that
are capable of chaotic non-linear dynamics (Freeman &
Kozma, 2000; Kozma & Freeman, 2001). These neuro-
logically inspired models are neither low nor high level
simulations of neurological function, but instead capture
behavior of the mesoscopic dynamics of brain function

(Freeman & Kozma, 2000). These models of neurologi-
cal function are capable of the dynamic formation of cat-
egories. These dynamic categories can be thought of as
models of embodied category formation. We are plan-
ning to expand such mechanisms to not only form per-
ceptual categories, but develop and display action-loop
like skills in the context of the problem domain. Our
goals are to see how far such mechanisms can go in de-
veloping problem solving behaviors, and to what extent
these behaviors mimic those seen in natural cognitive
systems.

Eventually we plan to build simplified models of com-
plete limbic systems. We hope that these models will be
capable of displaying forms of true intentional behavior
in autonomous adaptive systems. Such models should
display some of the characteristic flexibility of the prob-
lem solving behavior that develops in natural cognitive
agents. We are developing agents in cognitively demand-
ing real time task environments. Beginning with some
virtual environments, like the game of Tetris (Kirsh &
Maglio, 1992, 1994), we are developing bottom-up neu-
rological models that are capable of category formation
and the development of behavior in such environments.
We hope to eventually move to more complex environ-
ments, and real autonomous robots.
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