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Abstract

is a new account of
transformation distance

Representational Distortion
similarity in which the
between representations  determines  similarity:
entities that are perceived to be similar have
representations that are readily transformed into one
another, whereas dissimilar entities require numerous
transformations. Here we present experimental
evidence in favour of this viewpoint.

Introduction

The breadth of cognitive and social contexts in which
similarity is invoked as an explanatory construct is
vast. Similarity forms part of the explanations of
memory retrieval, categorization, visual search, problem
solving, learning, linguistic knowledge and processing,
reasoning, and social judgment. The two classical
approaches to similarity are the spatial account (e.g.,
Nosofsky, 1986), which represents similarity in terms
of distance in psychological space, and Tversky's
(1977) contrast model which views similarity as a
function of common and distinctive features of the
entities under comparison. Both of these accounts have
been used successfully in cognitive modeling, however
both also suffer from fundamental limitations (see Hahn
& Chater, 1997, 1998a, 1998b). These models are
restricted in scope by the fact that they define similarity
over very specific and simple types of representation:
points in space or feature sets. However, the
representation of complex real-world stimuli, from faces
to auditory scenes, is typically assumed to require
structured representations, that can explicitly describe
objects, their parts, properties and the relations between
them. Relational information of this kind cannot readily
be encoded using lists of features or dimensional values
(Hahn & Chater, 1998a).

The present paper considers a recent theoretical
approach to similarity, Representational Distortion
(henceforth, RD; Hahn & Chater, 1997; Chater &
Hahn, 1997), which aims to provide a theoretical

framework applying to similarity judgements.
According to RD, the similarity between two entities is
a function of the “complexity” required to “distort” or
“transform” the representation of one into the
representation of the other. The simpler the necessary
transformation, the more similar they are assumed to
be.

How can the complexity of the transformation
between two representations be measured? At a
theoretical level, Hahn and Chater draw on a branch of
mathematics, Kolmogorov complexity theory (Li &
Vitanyi, 1997) that provides a rigorous and general way
of measuring the complexity of representations and
transformations between them. In intuitive terms,
according to Kolmogorov complexity theory, the
complexity of a representation is the length of the
shortest computer program that can generate that
representation. The idea is that representations that can
be generated by a short program are simple; those that
require longer programs are complex. We will not
consider the virtues of this measure of complexity here,
except to note that it supports substantial applications
in the cognitive and computing sciences (Chater, 1999).

Kolmogorov complexity has a natural application as
a measure of similarity between representations. The
simplest measure is the length of the shortest program
that “distorts” one representation into the other.
According to this viewpoint, the degree to which two
representations are similar is determined by how many
instructions must be followed to transform one into the
other. For example, the conditional Kolmogorov
complexity between the sequences 1 2 3 4 5 and 2 3 4
5 6 is small, because the simple instructions add 1 to
each digit and subtract 1 from each digit suffice to
transform one into the other. In the same way, 1 234 5
and 2 4 6 8 10 (multiply/divide each digit by 2) are
presumed to be similar. On the other hand, 1 23 4 5
and 3579 11 are viewed as less similar, because two
operations are required to transform one into the other
(e.g., multiply by 2 and add 1). Finally, two entirely
unrelated representations will be maximally dissimilar
because there will be no efficient way of transforming



one representation into the other. In this case, the most
efficient transformation will involve deleting the first
representation, and reconstructing the second from
scratch, because there is no shared information between
the objects that can be exploited. RD should be viewed
as a general framework for understanding similarity,
rather than as a specific cognitive account in
competition with the spatial or featural views. RD can
capture these accounts as special cases (see Chater &
Hahn, 1997 for derivations) and thus does not contrast
but rather subsumes these accounts. Another motivation
for RD is that it aims to provide an explanation for the
utility of similarity in inference, for example, to
categorize items on the basis of the categories of similar
items. To build a concrete psychological account of
similarity we need to consider (i) the nature of the
mental representations that are relevant to making a
similarity judgement; (ii) the set of transformations or
instructions that can be used to distort one
representation into another; (iii) any constraints on the
ability of the cognitive system to discover simple
transformations between mental representations.

Despite its generality, RD makes clear empirical
predictions. First and foremost, is the prediction that
transformations are relevant to similarity. It is this
prediction for which the current paper provides
empirical support. Crucially, though our own interest
in establishing the relevance of transformations to
similarity judgments is driven by our research program
on RD, the relevance of the general issue of similarity
and transformations, and thus of our results, extends
beyond our particular theory. As we will demonstrate,
the experimental evidence presented here raises
substantial problems for classical theories of similarity
and raises novel issues for any future work on
similarity.

Previous work

The central claim of RD, that similarity is based on
transformation distance, has several tentative precursors
in the experimental and computational literature. The
two most directly relevant experimental studies are by
Imai (1977) and Franks and Bransford (1975). Imai
proposed that pattern similarity between strings of
either filled or wunfilled circles was based on
transformational structure. He found support for this
claim in terms of a qualitative relationship between the
number of transformations between two patterns and
their judged similarity. However, no statistical analysis
was performed. Franks and Bransford (1975) sought to
extend Posner and Keele's (1968) work on prototype
abstraction, replacing the original random dot patterns
with simple geometric figures. Underlying the stimulus
set was a prototype that was not shown during training;
all other items in the stimulus set were derived from
this prototype through the application of one or more
simple transformations. Recognition ratings were
directly related to transformational distance to the

prototype, with the prototype itself receiving the
highest rating. Finally, the account has some resonance
in the perception literature where transformational
explanations have been used to explain figural regularity
or “goodness”, as well as figuring in theories of object
recognition.

In summary, there is currently no clear experimental
evidence for the importance of transformations in the
context of similarity, despite previous research hinting
at this idea. Three experiments were designed to
address this issue. Each of the experiments shared the
same basic correlational design and differed only in their
stimulus materials. The aim was to establish
transformational distance as a predictor of perceived
similarity, while at the same time providing evidence
for the limitations of featural (and spatial) accounts.

Experiment 1

Experiment 1 was based on Imai (1977), and uses
sequences of filled or unfilled circles. Transformational
distance was manipulated in terms of the number of
operations such as mirror imaging, reversal, phase shift,
insertion and deletion that were necessary to convert the
test stimulus into the target. This is best illustrated
with an example stimulus pair, shown below.
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The two rows of “blob” patterns can be transformed
into one another through the application of a single
operation that “reflects” one row to create the other row
in a mirror image. This prediction contrasts with that of
the featural account (Tversky, 1977), if we adopt the
natural assumption that features correspond to
individual blobs. According to this viewpoint, blob
patterns should be similar to the extent that they
overlap.

Participants 35 undergraduates psychology students.

Materials The stimuli consisted of strings of black and
white blobs, presented in pairs. The key
transformations were phasic, reversal and mirror, with
the addition of insertions and deletions. Any one of
these in isolation constituted a single transformation.
There were 16 examples of single transformations in
this experiment, (4 each of phasic, reversal, mirror and
deletion). Multiple transformations were achieved by
combining two or more of the above operations. The
total set of 56 comparison pairs consisted of 16
examples of two transformational changes (four each of
reversal & mirror, reversal & phasic, deletion & mirror
and insertion & phasic) and 16 examples of three
transformational changes (four each of deletion, reversal
& mirror, deletion, reversal & phasic, insertion,
reversal & mirror and insertion, reversal & phasic). As
a control, there were also 8 pairs of stimuli that were
unrelated (or so multiply transformed as to make the
transformations unperceivable). Each pair of stimuli was
printed horizontally onto a single sheet of paper



together with brief instructions and a rating scale from 1
(very dissimilar) to 7 (very similar). These sheets were
then placed into a different random order for each
participant and bound into a booklet.

Results

Bivariate  correlations  between  number  of
transformations and mean similarity rating of each item
were found to be highly significant with Spearman's rho
=-.69, p <.005. The comparison featural model which
left aligned the two rows of blobs and counted the
number of (mis)matching features fared considerably
worse: Spearman's rho = -.28, p < .05. Analysis of
individual subject ratings confirmed these findings,
revealing great conformity across participants: 25 of 35
participants showed significant correlations as predicted.
Such consistency was not found using the featural
model, with only 8 of the 35 participants showing a
significant correlation. The general relationship between
number of transformations and mean similarity ratings
is graphed below. The results suggest, somewhat
surprisingly (see e.g. Shepard, 1987), an approximately
linear relationship.
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Discussion

Experiment 1 provides evidence of a statistically
significant relationship between transformation distance
and perceived similarity to complement Imai's (1977)
more qualitative data. The results of Experiment 1 thus
confirm both Imai’s original intuition and the
predictions of the RD framework. In direct comparison,
the featural model fares considerably worse in predicting
participants' ratings. Consequently the results also
provide evidence for limitations in featural approaches.
It is, of course, possible that more powerful featural
descriptions of the data could be found, but, at present,
none are available. Crucially, any putative featural
explanation of this kind requires an independent
motivation of the features adopted, that is, the
postulated features must themselves not be motivated
exclusively by salient transformations. Otherwise, the
featural description becomes an entirely redundant

mimicry. The materials of Experiment 2 make this
point more clearly.

Experiment 2

This experiment used simple geometric shapes related
by different transformations, e.g., the pair of items
shown below has a transformation distance of two as
they can be made identical through rotation and color
change of one object part. Here, there is no obvious way
to apply a featural model for contrast purposes.
Furthermore, many of the “features” such as the
orientation of an item in a pair where one has been
rotated are salient only because of the relevant
transformations. This means that central object
“features” will be derivative on the transformations
present: e.g., orientation is unlikely to have cognitive
salience in a comparison until orientation is
manipulated through rotations. Consequently, though it
might, in principle, be possible to derive featural
descriptions for our stimulus items, these descriptions
would be likely to implicitly underscore the importance
of transformations, rather than providing an alternative
to relying on transformations. As in Experiment 1, the
prediction is that number of transformations will be
negatively correlated with degree of perceived
similarity.
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Participants 21 psychology undergraduates.

Materials There were three alternative “target”
geometric shape line drawings. The construction of the
stimulus sets began with the target shapes to which a
single transformation was then applied. Examples of
single adjustments were stretching the whole object or
changing all striped areas to filled-in black areas.
Multiple transformations were constructed by using a
combination of such techniques, one at a time. For each
of the three target stimuli there four examples each of
one, two, three, four and five transformations. This
made a set of 20 pairs of pictures for each base target,
yielding 60 in total. Each transformed geometric shape
was printed onto a separate page together with its
corresponding “target”, which was always placed to the
right of the transformed item. At the top of each page
were a set of instructions and a rating scale from 1 (very
dissimilar) to 7 (very similar).



Results

Bivariate  correlations  between  number  of
transformations and mean similarity rating of each item
were highly significant with Spearman's rho =-.89, p =
.000. Analysis of individual participants' ratings again
revealed great consistency across subjects, with 19 of
the 21 participants showing a significant correlation as
predicted. The relationship between number of
transformations and mean similarity ratings as graphed
below closely matches that found in Experiment 1. The
relationship between transformation distance and
similarity is again approximately linear.
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Discussion

Experiment 2 provide further supports the role of
transformations in the context of similarity, mirroring
the results of Experiment 1 with very different stimulus
materials. The materials of Experiment 2 also illustrate
how even natural “features”, such as orientation are
influenced by transformations. Many of the very
“features” that a featural account might posit seem
salient due to the transformational relationships between
the two compared objects. This is indicative of the
general bi-directional relationship posited by RD theory
between object representation and transformation, with
perceived transformations influencing which aspects of
an object become salient and vice versa.

Experiment 3
Experiment 3 sought to take the argument against
featural and spatial representations one step further, by
using materials for which such representation schemes
are obviously inadequate, because they depend on
relational structure. We used 3D objects assembled

from (typically) three Lego bricks: one large brick,
colored blue; a medium size yellow brick; and a small
red brick. Each similarity comparison comprised two
objects assembled from these three bricks, albeit in
different spatial arrangements. Despite the extreme
simplicity of these stimuli, relational information (i.e.,
information about relative position, such as, for
example, that the red brick as on top of the yellow
brick) is paramount to the representation of the
composite objects. However, the appeal of these
materials is not limited to the difficulties they pose for
featural or spatial accounts. From a transformational
perspective, the Lego brick objects are of interest for
two reasons. First, they allow an initial examination of
the role of transformations in the similarity assessment
of real-world objects, albeit maximally simple ones.
Second, these materials support a whole new range of
transformations to complement those investigated in
Experiments 1 and 2. Our assumption, here, was that
the judged similarity between pairs of objects would be
determined primarily by the physical manipulations
required to turn a target object into the comparison
object.

Participants 27 psychology undergraduates.

Materials The stimuli were based upon an initial
"target" array of three Lego bricks, (a four-point square
red brick, upon a six-point oblong yellow brick, on top
of an eight-point oblong blue brick) arranged into a
particular three-dimensional structure. Apart from the
two examples that were chosen to be totally unrelated
to the target, all of the Lego stimuli were constructed
by transforming the original target object a set number
of times, prior to the experiment. The researcher began
with the target arrangement and made adjustments to it,
each of which constituted one transformation. For
example, one adjustment (or transformation) could
involve moving an object within the arrangement,
substituting a brick for one of a different size or colour,
adding an additional brick, subtracting an existing
brick, or changing the order of the bricks within the
arrangement. The transformations required to create each
arrangement were counted and the entire set of stimuli
constructed so that it comprised of 42 items (10
examples of one and 10 of two transformations, and five
examples each of three, four, five and six
transformations away from the “target”. In addition
there were two items that were unrelated--multiply
transformed--stimuli). Once these arrangements of Lego
bricks had been constructed, each was glued into a
permanent structure.

Procedure Participants were shown the “target” Lego
brick object. They rated how similar they perceived
each stimulus to be to the target, on a scale of 1 (very
dissimilar) to 7 (very similar). Every participant rated
all the Lego stimuli within the set of 42 items.



Results

Bivariate  correlations ~ between  number  of
transformations and mean similarity rating of each item
where again highly significant, Spearman's tho = -.76,
p < .005. Analysis of individual participants' ratings
again revealed great consistency across subjects, with
all 35 exhibiting a significant correlation between
number of transformations and rated similarity. The
general relationship between number of transformations
and mean similarity ratings (shown below) is again
very similar to that that found in Experiments 1 and 2.
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Discussion

Despite the very different materials and set of relevant
transformations, the results of Experiment 3 closely
match those of Experiments 1 and 2. Again, they
provide evidence for the importance of transformations
in explaining similarity judgements, and are difficult to
account for in terms of the featural or spatial views of
similarity, which cannot easily handle relational
information. Thus, these results are in line with the
predictions of a central tenet of the RD account: that the
transformational relationship between representations of
two objects determines their judged similarity. But the
results Experiment 3 also have broader implications.
The inherently relational nature of the materials in
Experiment 3 poses a problem for any representational
scheme which does not allow structured representations;
conversely it lends support to any account such as
structural alignment theories to which such structured
representations are central. Similarly, the result that
number of transformations is a significant predictor of
perceived similarity lends support to the general notion

of an influence of transformations on similarity, whether
or not the particular framework of RD theory is adopted.

General Discussion

The results of all three experiments provide robust
evidence as to the importance of transformations in
explaining similarity judgments, across a variety of
different stimulus types. These findings support the
central tenet of the RD theory of similarity, that
similarity is based on the complexity of the
transformation between the representation of two items.
These results also provide new evidence for the
limitations of classical accounts of similarity. All three
experiments provide evidence against purely featural
views of similarity. Experiment 1 provides a direct test.
The version of the featural model we tested (assuming
that features correspond to blobs) is not the most
sophisticated featural description possible, given that,
in principle, any property including all higher-order
regularities such as “symmetry” etc. could be posited
as features (Tversky, 1977). Crucially, however, a more
sophisticated featural account which succeeds in
providing comparable or even superior data fits must
not only first be found, it must also be independently
motivated. Given that theories can be stretched beyond
all recognition through the addition of suitable post hoc
auxiliary assumptions, a crucial factor in evaluating
competing accounts must not only be whether an
account can be made compatible with a particular
pattern of data, but also whether it in any way predicted
it.

In Experiment 1, there is nothing in featural theories
of similarity that would naturally give rise to the
predictions made on the basis of transformations in this
experiment. The sequences of filled circles lend
themselves naturally to a featural decomposition on a
one by one basis due to the fact that the “object” is
readily parsed into a set of individual circles. Many of
the relevant “features” of the geometric shape stimuli in
Experiment 2 become cognitively salient only through
transformational contrast between the two comparison
objects (for example, the feature “orientation”
highlighted by the transformation ‘“rotation”).
Consequently, transformations are explanatorily prior.
The use of simple formations of Lego bricks in
Experiment 3 demonstrates the central representational
weakness of featural accounts - their inability to deal
with structured representations and thus adequately
represent relational information. The challenge
presented by Experiment 3 is to identify even a
remotely suitable featural description, given the inherent
relational nature of materials and transformations. The
limitations of featural accounts exposed by this series of
experiments is equally shared by spatial models of
similarity, whether they are based on multi-dimensional
scaling or standard connectionist networks. It must
again be stressed that from the perspective of RD
theory, featural and spatial accounts of similarity are not



wrong, they are simply too restricted to cope with the
flexibility of transformations available to the cognitive
system.

Interestingly, issues related to this research have been
raised in philosophy. Goldman (1986) suggests that the
lawfulness of human similarity judgments might be
furthered by an inherent preference ranking for
transformations, which comes in to play where multiple
transformational sequences could link the same
stimulus pair. This question links closely with a
central issue for future research, that of the relative
“cost” or “weight” of individual transformations.
Single transformations need not be equal in cost or
‘effort’. Such inequalities arise automatically in the
theory of Kolmogorov complexity, the general
mathematical framework on which RD theory draws.
Here, deletions, for example, tend to be less costly than
insertions, because deletions only require a specification
sufficient to identify the component for deletion,
whereas insertions require a complete specification of
the additional component. What weightings of this
kind, if any, are intrinsic to the cognitive system is an
issue we are currently seeking to determine through the
investigation of perceived similarity for different single
transformations.  Information as  to  relative
transformational costs will be crucial for more detailed
cognitive modeling and thus constitute a major issue
for future research. Another potentially interesting area
is to apply the approach to different domains;
particularly those that appear to require structured
representations where RD can be utilized in a
straightforward way. For example, two postures of a
hand, in terms of a specification of joint angles can be
compared simply. Given the transformations likely to
be salient in cognitive processing involving motor
control, we might expect that ‘similar’ hand positions
would correspond to positions that can readily be
transformed into each other.

We have presented a new account of similarity,
Representational Distortion, according to which the
judged similarity between a pair of items is determined
by the complexity of the transformation between the
mental representations of those items. We have tested
the central tenet of the account in three experiments,
finding that transformational complexity is, indeed,
inversely related to similarity. These results present a
challenge for other accounts of similarity, based on
feature comparison or spatial distance; and they indicate
that the view that similarity can be explained in terms
of transformation merits further theoretical and empirical
investigation.
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