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Abstract

Smith and Minda (2000) showed that mathematical
approximations of several popular categorization theories could be
fit equally well to the average “percentage of ‘A’ responses” in
their meta-analysis of studies that used the 5-4 category structure.
They conclude that the 5-4 category structure is not a useful
paradigm for explaining categorization in terms of cognitive
processes. We disagree with their conclusion, and contend instead
that the problem lies with the data collection and analysis methods
typically used to study categorization (in this and other category
structures). To support this claim, we describe a recently
completed study in which we collected and used a variety of
converging data to reveal the details of participants’ cognitive
processes in a 5-4 category structure task.

The Smith and Minda (2000) Meta-Analysis
Recently, Smith and Minda (2000) reanalyzed 29 data sets
(each set a particular condition in an experiment) collected
from the experimental literature on categorization that used
the 5-4 category structure.1  Eight of the sets employed the
stimuli called Brunswik faces. Others used yearbook photos
(4 sets), geometric shapes (11 sets), verbal descriptions (3
sets), and rocketships (3 sets).

As shown in Table 1, each stimulus in this category
structure has 4 binary features, whose combination creates
16 (24) different stimuli. The 5-4 structure splits this set into
two linearly-separable groups.

In the acquisition phase of a typical category learning
study, participants first learn to classify 9 of the 16 stimuli,
5 as A and 4 as B, as shown in the table. Each trial presents
the 9 learning items, one at a time, in a random sequence,
and the order changes from trial to trial. Participants classify
each as “A” or “B” and the correct assignment for each
stimulus is given as feedback. Typically, learning proceeds

____________
1They speak of 30 sets, but two of their sets are obviously a
duplication from an experiment by Medin and Smith (1981), for all
16 data points are identical for both sets.

until a participant classifies all 9 stimuli correctly in a single
trial. In the transfer test that follows, all 16 stimuli are
presented to the participants and they classify each, now
without feedback.

Table 1: The 5-4 category structure.

Feature
Stimulus

(M&S, 1981)

Stimulus
(S&M, 2000)

F1 F2 F3 F4

Category A
4A A1 1 1 1 0
7A A2 1 0 1 0

15A A3 1 0 1 1
13A A4 1 1 0 1
5A A5 0 1 1 1

Category B
12B B6 1 1 0 0
2B B7 0 1 1 0

14B B8 0 0 0 1
10B B9 0 0 0 0

Transfer
1A T10 1 0 0 1
3B T11 1 0 0 0
6A T12 1 1 1 1
8B T13 0 0 1 0
9A T14 0 1 0 1

11A T15 0 0 1 1
16B T16 0 1 0 0

Note. M&S = Medin & Smith; S&M = Smith & Minda. The
feature structure for Medin & Smith’s stimulus 4 is identical to that
in Smith & Minda’s stimulus A1, and so on.

Fitting the Data
For purposes of their meta-analysis, Smith and Minda
(2000) used data from the transfer trial in each of these 29



data sets. Specifically, for each of the 16 stimuli, they
computed the percentage of participants in each study who
classified a stimulus as an ‘A’ stimulus. They then averaged
these percentages over all 29 data sets to provide a global
average, containing 16 data points, one for each stimulus.
Thus, each data point represents the average percentage of
participants (in those 29 studies) who categorized a
particular stimulus as an ‘A’ stimulus. These data are
displayed in Figure 1.
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Figure 1.  Average percentage of category ‘A’ responses
from the Smith and Minda (2000) meta-analysis.

Smith and Minda (2000) next built a set of eight
mathematical models, one for each of the theories they
evaluated, and fitted each to the data for the 16 stimuli,
adjusting the available parameters (4-6 free parameters per
model) separately for best fit to each set of data. Then they
averaged the set of 29 predicted performance profiles, to
provide a set of 16 data points for comparison with the
aggregated average of the actual data over all 29 studies. As
Smith and Minda give a very clear and complete account of
the functions they used and the fitting procedure, we need
not repeat that information here. Table 2, adapted from
Smith and Minda's Table 2, summarizes the fits to the data
and the number of free parameters available to each model.

Table 2: Measures of Fit for Mathematical Models
in Smith and Minda (2000)

Model AAD PVA FP’s
Additive prototype 0.091 0.838 4
Multiplicative prototype 0.069 0.890 5
Context 0.047 0.941 5
Additive exemplar 0.144 0.664 4
Fixed low sensitivity 0.149 0.637 5
Gamma 0.045 0.944 6
Twin sensitivity 0.043 0.946 6
Mixture 0.046 0.944 5
Note. AAD = Average Absolute Deviation; PVA = Percentage of
Variance Accounted for (R2); FP’s = free parameters.

Models of the Experimental Materials
In the 5-4 category structure, individual features of value 1
(assignment of 1 and 0 is arbitrary in a particular
experiment) dominate the five A stimuli and features of
value 0 dominate the B stimuli: A stimuli average 2.8 1-
features; B stimuli average 1.25. It is reasonable that
participants would learn that 1-values indicate probable A
membership, and 0 values, probable B membership. We
refer to this characteristic of stimuli in the 5-4 category
structure as “A-proneness.”

Suppose we assign to each stimulus a value corresponding
to its "A-proneness." For example, we could assign a
stimulus 4 points for a 1 in F1, 3 points for a 1 in F2, 4
points for a 1 in F3, and 3 points for a 1 in F4,
corresponding to the frequency with which these feature
values are associated with category A in the learning set.
Then take the sum of these values as the measure of A-
proneness for a particular stimulus. By this method,
stimulus 4A gets a score of 11, and stimulus 12B gets a
score of 7.

We can fit this measure of A-proneness to the Smith and
Minda (2000) data (percentage of category A responses for
each stimulus) using a linear regression. The result is a 2-
parameter model (y = .034x + .069) that predicts the
percentage of category ‘A’ responses for all 16 stimuli with
an R2 of .81 and an AAD of .098. This simple linear
regression, with only two free parameters, and derived
strictly from the feature structure of the stimuli, accounts for
the lion’s share of the performance variability.

This analysis does not instill confidence that the more
elaborate models have much to say about the actual
psychological processes of the participants in these
experiments. The only thing any of these models (including
our strawman model) tell us about participants in these
studies is that they are capable of tuning their behavior to
the feature structure of the stimuli. These are more models
of the experimental materials than they are models of
psychological processes.

Indeed, Smith and Minda (2000) observe that the best of
the mathematical models all produced such good fits to the
data that it was impossible to choose between the very
different process models motivating them:

“. . . the underlying representation and process remains
undetermined and unknown. Therefore, one sees that
the [29] 5-4 data sets, when described by formal
models, are silent on the matter of whether categories
are represented in a way that is based on prototypes or
in a way that is based on exemplars.” (p. 17)
Smith and Minda (2000) conclude from this that the 5-4

category structure is too limited in its properties for general
conclusions to be drawn from it about the processes that
people use to learn new categories.

We do not agree that the 5-4 category structure is
inherently too limited to reveal the underlying cognitive
processes. We propose instead that the methods dominating
this area of research are too limited. You’ve got to have the
right tool for the job. In this case, the job is to uncover the
processes underlying category learning and categorization



performance. We claim that the right tool (methodology) for
this job is fine-grained information-processing analyses,
using a variety of converging measures. We have found that
detailed analysis of the trial-by-trial behaviors of individual
participants reveals rich complexity  in their categorization
processes. In the next section, we describe the completed
study, our approach to data analysis, and the lessons we
have learned about the complexity and variability of
categorization processes in the 5-4 paradigm.

An Information-Processing Analysis
The study we completed involved a partial replication of
Medin and Smith (1981), whose category learning study
implemented the 5-4 category structure using Brunswik
faces. The four binary features of Brunswik faces are Eye
Height (EH – High and Low), Eye Spacing (ES – Wide and
Narrow), Nose Length (NL – Long and Short), and Mouth
Height (MH – High and Low). These features – EH, ES,
NL, and MH – correspond to features F1-F4, respectively,
in Table 1. Like Medin and Smith, we used three instruction
conditions (Standard, Prototype, and Rule-X), a learning
phase, and a transfer phase. After that, participants were
presented each of the 16 faces and its associated category,
one at a time, and they rated the extent to which the face
was typical for that category on a 1-to-9 scale. At the end,
participants gave retrospective reports describing the
processes they used to categorize the stimuli. Thirty-six
Carnegie Mellon University undergraduates participated in
this study. Half gave concurrent verbal protocols during the
entire learning phase. Our analyses focus on these 18
participants.

A Variety of Measures
The data we have focused on in our process analyses
include (1) errors, (2) concurrent verbal protocols, (3)
typicality ratings, and (4) retrospective reports. Data
analysis were not limited to measuring the frequency with
which participants choose A or B responses to the 16 stimuli
during a transfer trial. Instead, we relied on analysis of the
detailed behavior of participants while they were performing
both the learning and the transfer task: data that revealed a
great deal about the processes they were using.

In performing these analyses, we have been guided by the
idiographic data analysis methods typified by Newell and
Simon (1972) and by a general theory of perception and
memory, EPAM, that has previously been applied to
aggregate data on the 5-4 task (Gobet, Richman, Staszewski,
& Simon, 1997). EPAM is a computer program that uses a
discrimination net architecture to simulate the participants'
behavior in responding to each stimulus. In fact, EPAM was
used to simulate the aggregate data from Medin and Smith
(1981) that comprises three of the 29 Smith and Minda
(2000) data sets.

Following are descriptions of our data analysis
procedures, accompanied by illustrations of how analysis at
this level of detail can reveal participants’ categorization
processes.

Errors. Participants may use from one to four features to
classify a face, and they exercise most of these options at
one time or another. Table 3 shows the likely errors that
arise (out of ambiguities) when the nine faces used in the
learning trials are categorized only on the basis of particular
features, or particular pairs, or triplets of features.

The four rows and the first four columns of the table name
the features. Each of the cells in the first four columns
corresponds to a classification of the faces on the
corresponding pair of features. For convenience of
reference, we have designated the cells of the table
corresponding to particular combinations of feature tests
with letters from M through Z.

For example cell V, which is at the intersection of row EH
and column NL, shows on the first line that 5A and 2B
cannot be distinguished using only these two features, for
both faces have identical eye heights and nose lengths
(EH=0; NL=1). Similarly (second line), 13A and 12B are
identical on EH (1) and NL (0), so a discrimination process
that relied only on those two features would not be able to
discriminate stimuli 13A and 12B. The other five faces form
two classes: A's with high eyes and long noses, and B's with
low eyes and short noses. So, for this particular pair of tests,
four faces are ambiguous or "hard," and likely to be
misclassified during learning. If, instead of EH:NL, the
features attended to were nose length and mouth height
(NL:MH), then 4A, 7A and 2B would fall in a single class,
as would 13A and 14B, and these five would be the hard
faces in this case. Thus, when participants use a particular
pair of features to classify faces, they will make the greatest
number of errors in classifying the faces that are hard for
that pair.

The column of Table 11 marked "EXCEPT" indicates
which faces would be error-prone if the three features except
the one labeling the corresponding row were tested (i.e., a
discrimination net using the three remaining features); the
column marked "SOLE" indicates which faces would be
error-prone if only the feature on that row were tested. The
EXCEPT column shows that all nine faces can be
categorized perfectly without the use of ES, but the three
other features, EH:NL:MH, must all be used. Notice that
each of the three triads of features that includes ES produces
a different set of hard faces, as does each net using only a
particular single feature.

By assessing which were the hardest faces during the
learning phase, we identified the dominant discrimination
strategy for each participant. Participants in the Prototype
instruction condition showed the most between-subject
variability in process, with strategies V, W, Y, P, and R
inferred from their errors in the learning phase. Standard
participants also showed considerable variability, with
evidence of strategies V, W, Y, and Z in their data. The
Rule-X participants, who were told explicitly to attend to
nose length, used strategies R and V.



Table 3: Error patterns predicted by feature selection in the 5-4 categorization paradigm

EH (F1) ES (F2) NL (F3) MH (F4) EXCEPT SOLE

EH
(F1)

5A,2B
4A,13A,12B

U

5A, 2B
13A,12B

V

5A,14B
4A,7A,12B

W

4A,2B

M

5A, 12B

N

ES
(F2)

4A,5A,2B
13A,12B

X

15A,14B
7A,10B
4A,2B,12B
Y O

7A,15A
2B,12B

P

NL
(F3)

4A,7A,2B
13A,14B

Z

4A,12B

Q

13A,2B

R

MH
(F4)

13A,12B
5A,2B

S

4A,7A
14B

T
Note. Stimuli listed in each cell (e.g., 5A, 12B) are those for which errors are expected if the participant is attending to
that conjunction or disjunction of features. Bold code letters (e.g., U, V, W) are used in the text as an economical
means of referring to specific categorization strategies, as indicated by increased attention to specific features. F1-F4 =
Features 1-4 in Table 1. EH = Eye Height; ES = Eye Spacing; NL = Nose Length; MH = Mouth Height. EXCEPT =
attention to all features except the feature in that row.  SOLE = attention to only the feature in that row.

Verbal Protocols. We assume that the features used in
discriminating and categorizing the faces are verbalizable.
The claim is not that participants will verbalize every
feature to which they attend, or even that discrimination is
always a verbal process; the claim is that the process of
encoding features can create a verbalizable representation,
and that patterns of verbalization of features are correlated
with patterns of attention to the stimuli.

The Brunswik faces are easy to distinguish visually, and
to describe verbally, using either the “official” features (eye
height, eye spacing, nose length, mouth height) mentioned
in the experimental instructions, or other descriptors that
may be already familiar to individual participants(e.g., "long
face", "small distance between nose and mouth," "wide
face," or even "monkey-like"). The official descriptors,
rather than idiosyncratic ones, are by far the more frequent
in the protocols.

Participants' protocols mainly reported values of features
of the face they were currently categorizing, sometimes
supplemented with a reason for  assigning the face to a
particular class, and sometimes with a comparison with a
previous face. The following (each preceded by identifier of
participant and experimental condition) are examples of
verbal responses to stimuli that described features in the
language of the instructions:

MS (prototype). "High eyes; short nose; low mouth.
Let's go with B, because the last one had high eyes and
low mouth."
ML (prototype). "I'll say this is A because of the nose
length and the eye height and the separation between
the eyes and the mouth."

Rather more austere and more typical are:
MK (standard). "close and high eyes, small nose,
middle mouth." (Chooses A.)
RB (prototype). "The eyes are low and the nose is big."
(Chooses B.)
The discrimination processes of participants who use

idiosyncratic descriptive terms are harder to identify, but the
descriptors they actually used were generally related to the
"official" ones in simple ways. For example, "long" faces
were faces with high eyes, and sometimes also with low
mouths. Faces with "eyes close to the nose" were faces with
low, close eyes. The meaning, in terms of features, of these
non-standard descriptors can usually be determined by
checking the characteristics of the faces to which
participants applied them.

Typicality Ratings. Following the transfer phase of the
experiment, participants were shown each face along with
its correct category. Their task was to rate the extent to
which each face was typical for its category. The verbal
protocol participants also provided explanations for their
ratings. These proved to be informative as additional
converging evidence regarding how participants were
discriminating the stimuli. Following are several examples
from the typicality rating explanations:

JIS (standard). “This one is pretty typical of A because
the eyes are way up high and spread out in this one.”
RB (prototype). “That one, I think, is typical because
the eyes are high and far apart, and the nose is little.”
MB (rule-x). “Typical. Short nose.”



In addition to lists of features as justification for the
ratings, participants occasionally referred to Gestalt
characteristics of the faces, using terms like “long” or
“wide”. For instance, “This one doesn’t look like a B face.
The eyes are high, and it looks like a kind of long face.” The
majority of explanations, however, were feature lists that
revealed the various ways participants used combinations of
feature values to categorize the stimuli.

Retrospective Reports. After the typicality ratings, the
experimenter asked each participant, “On what basis were
you making your classifications?” Following are two
example responses:

RB (prototype). “Most of the type A had high eyes, and
it didn’t matter where the nose is or the mouth. And
most of the B’s had eyes in the middle, but there was a
type B that had really high eyes. And then there was a
type A that had eyes in the middle with a little nose and
a long mouth.”
MK (standard). “Basically, small nose was A, big nose
was B. Basically, except small nose if the mouth was
low, I looked at the eyes, and if the eyes were low, then
it was B. If it was a big nose with little mouth and high
up, then I checked the eyes, and if the eyes were high,
then the face was A.”
Note that both RB’s and MK’s retrospective reports are

consistent with their concurrent verbalizations from the
learning trials. It is converging evidence of this sort that
increases our confidence in conclusions regarding
participants’ categorization processes.

Comparison of VP and NVP Errors
An assumption that is required in drawing generalizations
from the verbal protocol participants is that the requirement
to give protocols does not itself have a direct impact on
categorization processes in this task. It would be reassuring
if the performance of the verbal protocol (VP) participants
and the non-verbal protocol (NVP) participants were in fact
similar.

Following the logic in Table 3, to the extent participants
in the VP and NVP conditions found similar faces difficult
during the learning phase, there is evidence for similar
categorization strategies across those conditions.

In both conditions, the four most difficult stimuli are 2, 5,
12, and 13. These are difficult stimuli because they are
exceptions on features that are highly predictive of category
membership. Table 1 shows that stimuli 2 and 13 are
exceptions on Nose Length, while 5 and 12 are exceptions
on Eye Height. Additionally, pairs of those stimuli are
confusable if one ignores Mouth Height. That is, 2 and 5 are
identical except for mouth height, as are 12 and 13.  The
fact that these four stimuli are always the most difficult,
suggests that most participants, regardless of verbal protocol
condition, found it difficult to learn the exceptions.

Looking at error rates across all of the stimuli, we find
that VP and NVP error rates correlate r = .82, indicating a
high degree of similarity in the error patterns between the
two conditions. In terms of overall error rate, VP

participants tended to make more errors (Mean = 50.2) than
NVP participants (Mean = 39.7), although an ANOVA
reveals that this difference is not significant: F(1, 36) =
1.219, p = .277).

Summary of Findings
Due to space limitations, and because of the massiveness
and complexity of the body of data we are examining, we
must briefly summarize our most important findings.
Additionally, we feel that a general description of the results
will be more useful, in terms of distinguishing the
information processing approach from the more typical,
aggregate-level, nomothetic approach, than the specific
frequencies and percentages in our findings would be.
Therefore, we will finish the paper with an account of our
main findings.

One lesson that emerges from these rich data is that the
task structure itself was a major determinant of the
outcomes we measured. The influence of task structure on
performance is apparent in Figure 2, and we found similar
effects in our data. Because nearly all of our participants
achieved the learning criterion, we infer that they discovered
the implicit task structure.

A second finding is that most of the participants,
regardless of their instructional condition, interpreted the
task as one of forming rules that could be used to assign
faces to a category. This generally took the form of learning
what features were associated with the A or B categories,
then using this knowledge to classify faces by means of
their features, rather than defining prototypic faces or
cycling through comparisons with previous exemplars.
Feature-based rule following is apparent in the verbal
protocols presented earlier.

Regarding rule-based behaviors, some (but not all)
participants discovered that it was also useful to recognize
certain individual faces and associate their categories
directly with them. These were almost always the "hard"
faces that did not fit the simple rules they used to
discriminate the others. This was particularly apparent in
statements like, “Ah, this is the one that tricks me.” This
phenomenon is consistent with the model of Nosofsky,
Palmeri, and McKinley (1994), but the inconsistent
appearance of this phenomenon in our data also suggests
that model’s limitations.

Another finding is that the numerous differences in the
behaviors of different participants could be traced in large
measure to different strategies of attention, and different
strategies for retaining and combining information about
features and combinations of features upon which rules of
choice could be built. Strategies were effective to the extent
that they made only modest demands on memory, including
demands on short-term memory and demands for
transferring information to long-term memory and retaining
it for use in building up the structure of decision rules.

Perhaps the most consistent phenomenon we observed in
the data was the high degree of within-participant variability
in process. Examination of participants’ stimulus-by-
stimulus category responses and corresponding



verbalizations reveals that the dominant rule-based
processes are sprinkled with instances of comparing the
current stimulus to the immediately preceding stimulus, and
also increasing evidence of recognition-based processes
(especially for the hard faces) with experience. Even within
the rule-based processes, there was a good deal of
variability, as participants had varying degrees of success
with the feature-based rules they generated and tested.

Conclusion
Sciences are concerned with discovering and testing laws
that describe the invariant features of their domains.
Invariance is a complex concept. Even the gravitational
constant is not an invariant once one strays from the Earth
or ascends a mountain. So science has laws, like the law of
gravitational attraction, but it has parameters and variables
that specify the workings of each law as a function of
various circumstances.

Matters become especially complex when we consider
laws of biology, with its immense variety of living forms,
and still more complex when we consider the laws of
psychology, which seeks the regularities in the behavior of
an organism that has enormous capabilities for adaptation
and learning. Not only will the behavior vary with the
innumerable features of the environment in which the
person performs the task, but even leaving genetic
differences aside, it will vary as a function of each
individual's previous history of experience and instruction.

The experimental data we have analyzed here illustrate a
number of such complexities. No unitary set of laws, taken
by itself, governs the precise way in which a set of people
go about solving a simple categorization task, not even if all
of them are drawn from the same university population.
Covering variation by averaging conceals it but does not
banish it or explain it. Siegler (1987) made the same point
about the “Perils of Averaging,” but in the context of
analyzing children’s arithmetic. With this paper we illustrate
the value of a fine-grained, multivariate approach for
advancing our understanding of categorization and category
learning in terms of their underlying cognitive processes.

It was almost a half century ago that Bruner, Goodnow,
and Austin (1956) published their seminal work on
categorization, A Study of Thinking. In the introduction to
that book, they wrote:

“. . . we have come gradually to the conclusion that
what is most needed in the analysis of categorizing
phenomena . . . is an adequate analytic description of
the actual behavior that goes on when a person learns
how to use defining cues as a basis for grouping the
events of his environment.” (p. 23)
To understand participants’ actual behaviors during

categorization and category learning processes, not only did
we need to analyze the behavior of individual participants,
but the data obtained from each had to be of a grain size fine
enough to capture some detail of ongoing learning
processes. We examined errors and concurrent
verbalizations stimulus-by-stimulus, then looked for
converging evidence in participants’ typicality ratings and

their retrospective reports. The requirement that conclusions
about participants' processes should be based on the
convergence of multiple measures provided strong tests of
the validity of our findings. In the end, our approach yielded
a rich, descriptive understanding of the underlying
representations and processes employed by participants in
our study.

The challenge to explain the phenomena observed
remains. Because of the variety of measures used in our
analyses, and the variation among them in granularity, we
advocate the development of simulation models. We submit
that detailed, multivariate information-processing analyses
and simulation modeling are tools that are well-suited for
the job of advancing understanding of category learning and
categorization. The data help us come to a better
understanding of actual cognitive processes in category
learning, and simulation models allow for the possibility of
accounting for the enormous variability in process within
and between participants.
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