Development of Physics Text Corpora for Latent Semantic Analysis
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Abstract

Student responses to qualitative physics questions were
analyzed with latent semantic analysis (LSA), using
different text corpora. Physics potentially has a number
of distinctive characteristics that are not encountered in
many other knowledge domains. Physics texts exist at a
variety of levels and typically involve an integrated
presentation of text, figures and equations. We explore
the adequacy of several text corpora and report results on
vector lengths and correlations between key terms in
elementary mechanics. The results suggest that a
carefully constructed smaller corpus may provide a more
accurate representation of fundamental physical concepts
than a much larger one.

Introduction

The physics classroom has often served as a laboratory
for cognitive science. Studies of students learning or
failing to learn physics have influenced notions of
conceptual change, question answering and tutoring
strategy (Albacete & VanLehn, 2000; Van Heuvelen,
1991). The physics teaching community is now aware
that conventional teaching methods often

fail to make any significant change in the student’s
understanding of the physical world. While students in
the more technical introductory courses might develop
the ability to recognize certain problem templates and
to manipulate equations, and those in ‘“conceptual”
physics courses learn enough set answers to pass
multiple choice exams, there is ample evidence that
many students retain the same misconceptions about the
nature of everyday phenomena with which they began
the formal study of physics (Ploetzner & VanLehn,
1997).

The study of physics allegedly places rather different
demands on the student than other academic work, as is
readily apparent in the texts that are used. The goal of
“understanding physics” or “thinking like a physicist”,
to which most instructors aspire, involves a
combination of declarative and procedural knowledge
in which the procedural component figures far more
significantly than in, for example, a survey of history or
introductory computer literacy. Language is used
somewhat differently in physics than in other scientific
fields. While biology and chemistry resort to Greco-
Roman or Germanic word forming conventions to



introduce new words with precise meanings, physics
more often than not takes words from ordinary
language, like force and momentum, and restricts their
meaning to a single sense. In most modern physics
texts (such as Hewitt, 1998), there are multiple
photographs or simple sketches on every page, and
much of the text is directly organized around these
figures. Much of the exposition in conceptual physics
courses includes questions and answers that may be
separated by text. Physics texts often devote
considerable space to the historical evolution of
physical concepts, the cultural context of physics, and
its social impact. Some authors also devote appreciable
space to discussing discarded theories and chains of
reasoning that lead to incorrect conclusions. Thus, a
significant fraction of the text found in a physics text
may, in fact, exemplify incorrect thinking.

Our group has been developing a corpus of texts
about physics that will eventually be used in an
intelligent tutoring system on conceptual physics. The
text corpus is needed to build a latent semantic analysis
(LSA) space, which will be used to process the meaning
of student answers in ordinary language. This paper is
concerned particularly with the best strategy to
construct such a corpus. A naive approach would be to
gather a number of physics texts, and combine them
into one corpus. However, there are unusual challenges
taking this approach. What should be done about the
diagrams in the text? What about the text that was
written to illustrate incorrect reasoning? Does the
inclusion of texts at different levels strengthen or dilute
the accuracy with which physics concepts are
represented in the LSA space? In short, how much
special preparation of the corpus is needed, if it is to
provide a reliable representation of the physics that
students are expected to learn?

Latent Semantic Analysis
LSA has recently been proposed as a statistical
representation of a large body of world knowledge
(Kintsch, 1998; Landauer & Dumais, 1997). LSA
provides the foundation for grading essays, even essays
that are not well formed grammatically, semantically,
and rhetorically; in fact, LSA-based essay graders
assign grades to assays as reliably as experts in
composition (Foltz, Gilliam, & Kendall, 2000). LSA
has been used to evaluate the quality of student
contributions in interactive dialogs between college
students and AutoTutor, a tutoring system in the
domain of computer literacy; the LSA module
evaluates the quality of student answers to questions
almost as reliably as graduate student research
assistants (Graesser, P. Wiemer-Hastings, K. Wiemer-
Hastings, Harter, Person, & TRG, 2000; P. Wiemer-
Hastings, K. Wiemer-Hastings, Graesser, & TRG,
1999). Given these successes in using LSA to evaluate

the quality of student essays and contributions in
tutoring systems, on a variety of topics, we were
interested in exploring how LSA would fare in the
domain of qualitative physics.

LSA is a mathematical technique in which the

information contained in the co-occurrences of words in
a body of text is compressed into a set of vectors in N-
dimensional space. The input to LSA is word co-
occurrence matrix M, where the individual elements
Mij is the number of times that the ith word occurs in
the jth document. A document is an arbitrarily defined
unit, but normally is a sentence, paragraph, or section in
a text. The rows and columns of the matrix are then
subjected to mathematical transformations that take into
account the frequency of word use in the document
(Berry, Dumais, & O’Brien, 1995; Landauer, Foltz, &
Laham, 1998). Using the mathematical process of
singular value decomposition, the matrix is then
expressed as the product of three matrices, the second
of which contains the singular values on the diagonal.
Changing all but the largest N singular values to zero
sets the dimensionality N of the vector space
representing the text. The matrices are then re-
multiplied to produce a matrix of the same dimensions
of the original matrix.
At first glance it might seem that by discarding some of
the singular values we are discarding information.
However, it turns out in practice that the lower
dimensional representation better captures the meaning
of the text. For instance, there ends up being a positive
relationship between the coefficients in the rows
corresponding to different words, if the words have
similar or associated meanings. The reduced number of
dimensions are sufficient for evaluating the conceptual
relatedness between any two bags of words. A bag is
an unordered set of one or more words. The match
(i.e., similarity in meaning, conceptual relatedness)
between two bags of words is computed as the
geometric cosine (or dot product) between the two
associated vectors, with values that normally range
from O to 1. LSA successfully predicts the coherence
of successive sentences in text (Foltz, Kintsch, &
Landauer, 1998), the similarity between student
answers and ideal answers to questions (Graesser, P.
Wiemer-Hastings, et al., 2000; Wiemer-Hastings et al.,
1999), and the structural distance between nodes in
conceptual graph structures (Graesser, Karnavat,
Pomeroy, Wiemer-Hastings, & TRG, 2000). At this
point, researchers are exploring the strengths and
limitations of LSA in representing world knowledge.

Constructing an LSA Corpus That Knows
About Physics

We have assembled several different physics corpora to
test the effect of the content of the subject matter on the



quality of the LSA solutions. The documents in the
texts were classified into different rhetorical categories,
such as exposition, example problems, historico-
cultural material, incorrect reasoning, and so on. The
fundamental research question is whether the inclusion
of different texts and categories of content have an
impact on the representation of core concepts in the
mechanics portion of a conceptual physics course. All
the corpora include text materials from the mechanics
portion of Paul Hewitt’s Conceptual Physics (1998), a
text that is widely used in conceptual physics courses at
the college level; these were used with permission from
the publisher. The “Omnibus” corpus included chapters
2-9 of the Hewitt book plus six volumes of a
comprehensive text aimed at students in technical or
life science majors, two advanced texts in
electromagnetism, and another physics text that was
available electronically. The “Large” corpus was
constructed from the former by deleting the three latter
texts. A “Small” corpus further deleted the texts that
did not cover mechanics. A “Restricted Small” corpus
further deleted any text identified as primarily
historico-cultural or involving misconceptions. In the
“Restricted Hewitt” corpus, we included only those
texts from Hewitt in the restricted small corpus. Each
of the corpora was thus a proper subset of the preceding
one, with the goal of further refining or sanitizing the
text corpus to handle the core concepts in mechanics.
The time needed to “restrict” a text was minimal once
the text was converted to electronic form.

Vector Lengths and Similarity

Kintsch (1998) proposed that the length of the vectors
representing key terms provides a measure of the extent
to which the LSA has captured the meaning (or
importance, centrality) of the word with respect to the
subject matter. The vector length increases to the
extent that the set of values in the vector deviate from
zero. Words like force, momentum and gravitation
should have reasonably large vector lengths in any
corpus that represented basic physics concepts well.

LSA spaces of 100, 200, 300, 400, and 500
dimensions were created for each of the above five
corpora. Each text paragraph was treated as a
document. Figure captions were eliminated. Questions
& answers were lumped in the same document. Based
on the vector lengths computed for the key mechanics
words listed in Table 1, it was decided that little
improvement would be achieved by going beyond 500
dimensions. The restricted Hewitt corpus was so small
that only a 400 dimensional representation could be
obtained. The vector lengths for selected physics words
in a 300 dimensional space are shown in Table 1.

A number of conclusions can readily be drawn from
Table 1. There is a general correlation between vector
lengths of the first two corpora and between those of

the two smallest corpora. When we eliminated the
material not pertinent to mechanics as presently
understood, some vectors ended up increasing in length.
For example, the impulse concept, which occurs only in
mechanics, had a significantly larger vector length in
the smaller corpora than in the larger corpora. The
same can be said for tension, which is the force
transmitted by a rope or cable, and is useful only in
mechanics. Even a concept like energy, which
pervades all areas of physics, appears to be more crisply
represented in the smaller corpus.

Table 1. Vector Lengths for Physics Words.

Word Omnibus Large Small R-small R-Hewitt
Gravity .288 281 262 242 .240
Gravitational .256 250 223 256 283
Mass .300 293 269 239 .288
Acceleration .300 296 266 270 284
Force .186 179 155 128 153
Momentum .267 263 258 283 288
Energy 222 219 228 238 313
Impulse 367 371 400 432 466

Friction 320 314 301 313 375
Velocity 252 250 240 236 291
Vector 285 305 292 382 455
Potential 323 328  .361 .386 464
Tension .266 271 302 .390 475

Kinetic 298 294 301 312 422
Normal 315 314 352 414 373
Newton .347 242 211 206 .265
Aristotle .309 309 318 409 436
Galileo 324 326 325 338 355

Newtonian  .242 223221 339 .000

The names of the key physicists, Galileo and
Newton, along with that of Aristotle, whose notions of
physics are now largely discarded, were also included
in our study of vector lengths. Interestingly, our efforts
to eliminate material of only historical value in the two
restricted corpora did not eliminate a rather well
represented Aristotle.  LSA did pick up stylistic
characteristics of individual authors.

The similarity between concepts in LSA is
represented by the cosine values in corresponding
vectors. We computed the cosines between the physics
terms in Table 1 and these appear in Table 2. The
greatest similarity appeared for kinetic energy, which is
in effect a composite word and for impulse-momentum,
which would appear as a composite in the “impulse-
momentum theorem” and the exposition of it, in that
impulse equals the net change of momentum in a
collision. We note that the similarities between mass
and acceleration and between force and acceleration,
which would be expected in any exposition based on
Newton’s second law (the net force on an object equals



the mass times its acceleration). The similarity scores
are appreciably more apparent in the smaller corpora
with the irrelevant text removed.

Table 2. Largest magnitude cosines between key
physics terms. (Corpora titles are abbreviated)

Correlation Om Lge Sm R-Sm R-H
Gravitational force .084 .083 .093 .146 .029

Gravitational potential .058 .091 .097 .107  .032

Force acceleration 006 .009 .009 .048 .087
Mass acceleration .033 .035 .044 .070 .066
Normal force .080 .084 .125 .096 .043
Mass momentum 010 .013 .028 .040 .077

Impulse momentum .182 .187 .176 .196  .148

Kinetic energy 209 228 265 267 .267

Tension friction .052 .052 .020 .066 .001

Vector Velocity .052 .055 .053 .065 .059

Kinetic friction .081 .083 .020 .066 .026
Summary

We have developed a number of alternative physics text
corpora for use in the evaluation of student answers to
physics questions. Comparisons of word length and
word similarity suggest that both the elimination of
material from other areas of physics and other levels of
exposition, as well as the elimination of material not
dealing with the exposition of the physical concepts,
allows an improved representation of core physics
terms and the relationships between them, even with a
rather small corpus. However, this conclusion is
currently being tested on a large body of student and
expert answers to physics questions. The preliminary
results suggest that although vector lengths increase for
individual words with a refined selection of texts, it is a
large corpus that works best when the entire sentence is
used to evaluate the match of student and expert
answers. In other words, individual words may have a
crisper representation when a smaller, well-defined text
is used but when analyzing an answer formed around
the integration of several complex concepts, a broader
selection of texts is more beneficial. Furthermore, it is
our contention that a regression could be used to
capitalize on the unique information provided by both
types of LSA spaces. In future work, we will examine
the feasibility of adding picture descriptions in natural
language to the corpus and alternative treatments of
equations and composite words.
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