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Abstract

The acquisition of infant causal perception has been the
center of considerable debate, and some have attributed
this phenomenon to an innate causal module. Recent
studies, however, suggest that causal knowledge may
develop in infants through experience with the
environment. We present a computational model of
causal knowledge acquisition built using the
Constructivist Learning Architecture, a hierarchical self-
organizing system. This system does a remarkably good
job of developing causal perception from a component
view to a holistic view in a way that mirrors data from
habituation studies with human infants.

Causal Perception in Infants

Causal perception has been the focus of philosophical
inquiry for centuries, but it received its first notable
psychological investigation by Michotte (1963). He
presented adults with a scene in which one billiard ball
struck another stationary ball, resulting in the launching
of the stationary ball, and the halting of the moving
ball. The subjects, naturally, described this scene as a
“causal” event. But by manipulating the launching
event (along spatial or temporal dimensions), Michotte
could affect a subjects’ likeliness of perceiving
causality. One can alter the spatial component of the
event by introducing a gap between the two balls, so
that agent and the object never actually touch. Also, one
can alter the femporal component by introducing a
delay between the moment of contact and the moment
of launching. As these components deviated from zero
gap and zero delay, adult subjects were less likely to
classify the event as “causal.” These events are
illustrated in Figure 1.

Since then, researchers have combined these events
with habituation techniques to demonstrate the presence
of causal perception in infants. One such study, by
Leslie (1984), was able to demonstrate 6 1/2-month-old
infants’ ability to discriminate between different
launching events. Leslie further demonstrated that
infants’ responses were based, in part, on the causality

of the event. For example, infants habituated to a causal
event would dishabituate to a non-causal event (e.g.
from direct to gap), or vice versa. But infants would not
dishabituate to the same degree if the causality
remained constant between events (e.g. from delay to
delay+gap). Leslie then claimed that these results, since
they came from such young infants, were the product of
an innate “causal module”.
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Figure 1: Four different launching events.

More recent studies, though, have cast doubt on a
nativist view of causal perception. Cohen and Amsel
(1998) performed a similar experiment on 6 1/4-month-
old infants, and re-affirmed their ability to discriminate
causal events from non-causal events. But they then ran
the same experiment on 5 1/2-month-old and 4-month-
old infants and found that these younger infants were
not able to discriminate between launching events
strictly on the basis of causality. Rather, infants
responded to the spatial and temporal components of
the event. Unlike the older infants, younger infants
would respond to the introduction or removal or either a
delay or a gap, regardless of how this change impacted
the causality of the event.

Cohen and Amsel (1998) posited that these results
indicated a developmental component to causal
perception. It is this progression from component to
high-level concept that we are interested in modeling.
The development of causality is just one instance of a
more general part-to-whole progression that can be seen
in a variety of cognitive developmental domains. Cohen
(1998) pointed out numerous studies of developmental



cognition that fit this general framework, and proposed
an information processing approach to cognitive
development as an alternative to nativism. Rather than
being born with a set of innate perceptual modules,
infants start with very low-level perceptual capabilities.
This approach is summarized by the following set of
propositions (Cohen & Cashon, 2000):

1. Perceptual/cognitive development follows a set
of domain-general information processing
principles.

2. Information in the environment can be processed
at a number of different levels of organization.

3. Higher (more holistic) levels can be defined in
terms of the types of relations among lower
(parts) levels.

4. Development involves progressing to higher and
higher levels.

5. There is a bias to initiate processing at the
highest level available.

6. If an information overload occurs (such as when
movement is added or when the task involves
forming a category), the optimal strategy is to
fall back to a lower level of processing.

At the very least, long term development appears to
play an important role in the perception of high-level
concepts such as causality, regardless of the concept’s
origin. There are countless learning systems which
model knowledge acquisition. But we know of no such
model that conforms to the six propositions of
developmental information processing described above.
There are also very few computational models of infant
cognitive development that differentiate between long-
term learning and short-term habituation, let alone use
one to determine the other. One example in the
language development domain has recently reported by
Schafer and Mareschal (2001).

Constructivist Learning Architecture

The Constructivist Learning Architecture (CLA)
(Chaput, 2001) is a hierarchical self-organizing system
designed to generate concepts at multiple levels of
abstraction through the organization of sensory input.
Using the six propositions of cognitive development
listed above as a design specification, CLA was built to
learn hierarchical knowledge structures through
observation, and use those structures to produce the
kind of short-term habituation effects that infants
exhibit throughout their development.

The information processing approach to cognitive
development described above does not mention any
kind of corrective feedback, and thus suggests an
unsupervised learning system. For this reason, CLA
uses one such system, the Self-Organizing Map
(Kohonen, 1997), as a building block. The Self-

Organizing Map (SOM) is a two-dimensional matrix of
nodes, each of which stores a feature vector. As stimuli
are repeatedly presented to the SOM (as feature
vectors), the SOM adjusts the feature vectors of its
nodes to represent the observed stimuli. A trained SOM
exhibits the following attributes: 1) the feature vectors
of nodes in a SOM reflect the stimuli presented to the
SOM (environmental representation); 2) nodes which
are close to each other in the network have similar
feature vectors (similarity topography); and 3) stimuli
which occur more often will be represented by a larger
number of nodes (frequency effect).

But although the SOM performs the kind of
unsupervised category formation that appears to be at
work in cognitive development, it does not by itself
form the kind of hierarchical knowledge representation
suggested by the information processing approach.

CLA achieves this hierarchical representation by
connecting multiple SOMs into a hierarchy. Like a
regular SOM, the lowest layer of CLA (Level 1)
receives raw input from the environment. When a
stimulus is introduced, each node in the Level 1 layer
receives an activation, 4, which is in proportion to how
close the stimulus is to the nodes' representation. (This
is determined using a Euclidean distance metric.) These
activation values are then collected for the layer into a
corresponding matrix of activation values, or an
activation matrix. This activation matrix then becomes
the input vector to the layer directly above. This process
then repeats for as many layers as are contained in the
whole system. For an illustration, see Figure 2.
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Figure 2: The first two layers of an example CLA. The
darkness of each cell represents its level of activation.

Of course, two SOMs connected in this fashion can
learn no more or less than a single SOM would. But the
stratification of the SOMs allows for processing to
occur at intermediate stages. There are three types of
intermediate processing that are relevant to the present
discussion: activation decay, activation blurring, and
multi-modal layers. Activation Decay allows the
activation of a given node to decay over time, rather
than reset at each time step. This is useful as a
rudimentary representation of time and sequence.
Activation Blurring will “blur” the activation matrix by
applying a Gaussian filter to the matrix. This has the
effect of spreading the activation of a given node to



surrounding nodes, which is particularly useful given
the SOM’s similarity topography feature. Finally, a
layer can receive input from two or more lower-level
layers. We call these layers Multi-Modal Layers.

The result is a system that will have the information
processing properties listed above, which we address
one by one. First, CLA is not designed for any
particular domain, but is a domain-general learning
architecture that can readily be applied to any number
of areas in cognitive development. Second, when a
stimulus is introduced to the system, it will create
activation patterns at multiple layers, which are actually
different levels of organization; processing of these
patterns can occur at any of these layers. Third, because
each layer is organizing activation patterns of the layer
beneath it, higher-level representations can be defined
in terms of the types of relations among lower-level
representations.

Fourth, learning in CLA involves progressing to
higher and higher levels. When CLA is learning, each
layer is trying to build categories out of the activation
patterns of the layer beneath it. While one layer is
organizing, all the layers above it cannot form stable
categories because the underlying activation patterns
are unorganized. Only when a layer “settles” into a
coherent organization can the layers above it organize.
The result is a progression from level to level.

Propositions 5 and 6 involve the resulting behavior of
the system, rather than its organization. This paper does
not address these propositions directly, but we do
consider their ramifications in the discussion section.

Experiment: Learning a Causal Event

We conducted an experiment designed to show whether
CLA could model the data produced by human infant
subjects in the Cohen and Amsel (1998) study, given
the same experiment design and starting set of
assumptions. Specifically, we are looking to see if our
model exhibits the part-to-whole progression
demonstrated in infants between 4 and 6.25 months.

Design

Cohen and Amsel (1998) posit that infants are able to
perceive the spatial and temporal components of a
launching event before they perceive its causality. For
this reason, we present the launching events to the
learning system by means of two input vectors. The
first input vector (the “movement vector”) reported the
magnitude of the movement of each of the two balls
with two rows of nodes. By ignoring the position of
each ball, this layer would use activation decay to
represent the temporal information of the launching
event and exclude the spatial information. The
movement vector represented the movement of each
ball, with each ball represented in its own row. The

element of the row corresponding to the amount of
absolute change in position, scaled to the width of the
input vector, was set to 1.0. So, elements te on the right
side of the vector represent rapid movement, while the
left most element would represent no movement. These
values decay over time.

Figure 3, for example, shows the state where the first
ball (represented in the top row) is now stationary, but
was recently moving; while the second ball
(represented in the bottom row) is now moving, but was
recently stationary. This state occurs in a direct
launching event shortly after a collision.

Figure 3: The movement input vector. The decay is
shown by a decrease in brightness (or change in color
from yellow to red).

The second input vector (the “position vector”)
reported the position of the balls on the table. The
position was represented by a 20 element vector. (The
vector only had one row of nodes because the collisions
presented were always horizontal.) The positions of the
balls on the table were scaled to the 20 element vector,
and the element nearest to each ball’s position was set
to 1.0. Complimentary to the movement vector, the
position vector reports the spatial information and
excludes the temporal information.

Figure 4: The position input vector.

In Figure four, we see the state where the two balls
are close, but not touching. Like Figure 3, this state
occurs in a launching event shortly after a collision.

Receiving each input vector was a 5-by-5 node layer
to observe it. The “movement layer” organized
activation patterns in the movement vector, while the
“position layer” organized activation patterns in the
position vector. These Level 1 layers would learn the
independent spatial and temporal features of the
launching event.

Finally, there was a Level 2 layer (the “Top Layer”),
which observed both bottom-level layers. This layer, 6-
by-6 nodes, would learn the combination of activation
patterns in the Level 1 layers. Thus, it should discover
the combination of spatio-temporal events that
comprise each of the events.



The movement vector had an activation decay of
0.25, so that the movement layer could learn the
temporal attributes of the ball movements. All other
layers had an activation decay of 1.0 (instant decay).
Similarly, the position vector had its blurring set to 0.6
to let it see proximal ball positions as similar (that is,
having a ball at position 3 is very similar to having a
ball at position 4, but very different from having a ball
at position 17). All other layers had their blurring set to
0.0 (that is, turned off).

Top Layer
(5x5) Level 2
Movement Position
Layer Layer Level 1
(6x6) (6x6)
[ITTTTTT] [TTTTTTT] Input Vectors
Movement Vector Position Vector

Figure 5: A schematic of the CLA used in the causality
experiment.

To generate the launching events, we used a
simulated “pool table” written for this experiment. This
pool table is used for both the long-term training of the
learning system as well as the short-term habituation
studies. A simple algorithm was used to represent the
state of the pool table through the two input vectors.

For long-term training (meant to represent an infant’s
long-term experience with the world), the learning
system was presented with 2500 complete launching
events. The type of launching event presented to the
learning system was chosen using a probability meant
to approximate roughly the nature of the real world: a
direct launching event had a 0.85 probability of being
chosen, while delay, gap, and delay+gap events each
had a probability of 0.05. The presentation of a
complete launching event constituted a single training
cycle. The learning rates and neighborhoods of each
SOM in the CLA system were decreased as training
progressed. (Learning rate decreased from 0.1 to 0.0
over 1000 cycles, and the neighborhood from 1.0 to 0.0
in the same time frame.) This is the customary training
procedure when using SOMs.

In order to simulate the changes during the short-term
habituation trials, a “familiarity” variable F was
associated with each node. Remember that we associate
an activation 4 with each node. Familiarity for each

node always approached the node’s activation by some
rate using the formula F=F+r(A-F), where r is the rate
of approach. We then determined an output O for each
node using the formula O=A4"(1.0-(4-F)). Recalling
that both F" and 4 are between 0.0 and 1.0, the result is
that output levels are amplified, relative to raw
activation, as activation differs from the familiarized
level. (See Figure 6 for a graphical representation of
these values.) The output for each node in a layer was
summed to create a Layer Output. This was then
averaged across the duration of the event, giving us a
Mean Layer Output. Dishabituation was measured as
change in Mean Layer Output.
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Figure 6: Example values of Activation, Familiarization
and Output for a single node during the habituation
trials. An event change at time step 12 is represented by
a jump in activation.

For each habituation trial, the network was exposed
to five repetitions of the habituation event, and then
exposed to the test event. A complete habituation
experiment consists of 16 parts: four habituation events
by four test events. Familiarity levels were cleared for
all nodes before each part of the habituation
experiment. In all, 12 “simulated infants” were fully
trained and tested.

Results

Because of the nature of the events we are dealing
with, the difference between a delay event and a gap
event should be the same as the difference between a
direct event and a delay+gap event. This is because
both pairs involve equal changes along the spatial and
temporal axes. (See Figure 7.)



Delay Delay+Gap
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Figure 7: Launching events along spatial and temporal
axes. Events at opposite corners involve both a spatial
and temporal change of equal amounts and, thus, should
be equivalent given a component model.

We averaged the dishabituation levels for delay-to-
gap trials with gap-to-delay trials, and compared them
to the average of direct-to-delay+gap trials and
delay+gap-to-direct trials. We did an analysis of
variance on both of the Level 1 layers and found that, in
fact, both showed a significantly greater response to
delay-gap changes, F(1,11) = 243.3, p < .0001 and
F(1,11) = 34.4, p < .0001 for the movement and
position layers, respectively.

This odd disparity comes about because we have
designed each of the Level 1 layers to train on one
component exclusively, to the exclusion of the other.
For example, the movement layer, which is sensitive to
temporal differences, is insensitive to spatial
differences, so that a direct event and a gap event look
nearly identical. For this reason, we would expect this
layer to see the direct event and the delay+gap event as
similar, since the direct event looks like a gap event,
and the delay+gap event also has a gap. The converse is
true for the position layer. Thus, we would expect these
two layers to respond more to the delay-to-gap change.

We verified that this difference was the result of the
exclusivity of the input by comparing the average of
trials where there was strictly a spatial change to the
average of trials where there was strictly a temporal
change. There was a significantly greater response to
temporal changes than spatial changes in the movement
layer, F(2,22) = 4.1, p < .05. And, conversely, there
was a significantly greater response to spatial changes
in the position layer, F(2,22) = 123.2, p <.0001.

Having verified that our Level 1 layers were
operating according to our expectations, we then
wanted to see if the Top Layer was responding to the
components of the events or to their causality. We ran
an analysis of variance on the same two event types as
above: direct-delay+gap and delay-gap. Without the
component exclusivity present in the Level 1 layers, the

difference between these two conditions should be the
same. However, there was a significantly greater
response to the direct-delay+gap change than to the
delay—gap change, F(2,22) = 15.3, p < .0001. This
shows a clear preference on the basis of causality rather
than just the independent components.

We can see, too, that this difference in processing has
a developmental or long-term experiential component.
Figure 8a and 8b shows the preference for a component
model of causality settling in the two Level 1 layers
after about 800 training cycles. Figure 8c shows that the
Top Layer does not settle on a causal model until about
1500 cycles. As mentioned earlier, this is because of the
nature of CLA: the lower levels must settle before the
higher levels can.
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Figures 8a, 8b and 8c: The acquisition of a component
model vs. a causal model in different layers over time.



Discussion

Our CLA system has created a hierarchical
knowledge structure that can produce habituation
results compatible with those from similar studies with
human infants. These results are consistent with those
of Cohen and Amsel (1998) as well as Leslie (1986).
Contrary to Leslie’s conclusions, however, our model
does not rely on a causality module.

That is not to say, of course, that our model has
nothing built in to it. CLA is not tabula rasa. Unlike a
modularist view, though, the innate attributes of CLA
are domain general information processing principles.
More generally, CLA has innate processes, rather than
specific innate knowledge of abstract concepts.

CLA also relies on the vast majority of direct events
in the world compared to non-direct events. We believe
that infants also rely on this arrangement. CLA is
guided by the nature of the environment to develop a
causal model because there are simply more direct
events in the environment. We can imagine an alternate
universe which contained more delay events than any
other kind, and our model would predict that
development in this kind of environment would result
in a drastically different world view.

One might ask what the point of having a stratified
representation of causality might be, when it might be
possible to achieve this same learning with a monolithic
system. As previously stated, our hierarchical approach
has the effect of producing the stages in development
that we see in infants. But more than just fitting the
experimental data, a hierarchical representation makes
it possible to address the last two information
processing principles described above. Cohen and
Cashon (2000), and others, have observed hierarchical
knowledge processing in infants, both in terms of
perceptual preference and in handling cognitive
overload. CLA’s hierarchical design makes such
processing possible, where a monolithic system would
not. We intend to use CLA for robotic control, and we
feel that principles five and six can be used with CLA’s
knowledge hierarchy to give certain layers priority over
others. Also, we plan to test proposition six by
overloading our system and seeing if it produces the
“fall back” phenomenon that has been demonstrated in
infants.

Conclusion

Although there are several connectionist models of
infant development, CLA is the first to use hierarchical
representation and differentiate between long-term and
short-experience. These are important factors in
cognitive development, and are often not given much
weight even in real infant habituation experiments. The
information processing approach to cognitive
development has been applied to infant cognition with

considerable success. We feel that a computational
model which uses this approach holds promise for
modeling the acquisition of a variety of domains within
infant, child, and even adult cognition.
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