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Abstract

This paper presents an Artificial Life and Neural
Network (ALNN) model for the evolution of syntax. The
simulation methodology provides a unifying approach
for the study of the evolution of language and its
interaction with other behavioral and neural factors. The
model uses an object manipulation task to simulate the
evolution of language based on a simple verb-noun rule.
The analyses of results focus on the interaction between
language and other non-linguistic abilities, and on the
neural control of linguistic abilities. The model shows
that the beneficial effects of language on non-linguistic
behavior are explained by the emergence of distinct
internal representation patterns for the processing of
verbs and nouns.

Modeling the Evolution of Language

The recent development of computational evolutionary
models (Wiles & Hallinan, in press) has contributed to
the rebirth of interest in the origin and evolution of
language. Computational models can directly simulate
the evolution of communication and the emergence of
language in populations of interacting organisms
(Cangelosi & Parisi, in press; Dessalles & Ghadakpour,
2000; Steels, 1997). Various simulation approaches are
used such as communication between rule-based agents
(Kirby, 1999), recurrent neural networks (Batali, 1994;
Ellefson & Christiansen, 2000), robotics (Kaplan, 2000;
Steels & Vogt, 1997), and internet agents (Steels &
Kaplan, 1999).

Artificial Life Neural Networks (ALNN) are neural
networks controlling the behavior of organisms that live
in an environment and are members of evolving
populations of organisms. ALNN models have been
used to simulate the evolution of language (Cangelosi
& Parisi, 1998; Cangelosi, 1999; Cangelosi & Harnad,
in press; Parisi, 1997). For example, in Cangelosi and
Parisi's (1998) model organisms evolve a shared
lexicon for naming different types of foods.
Communication signals are processed by neural
networks with genetically inherited connection weights

and the signals evolve at the population level using a
genetic algorithm with no changes during an
individual's lifetime.

ALNN models provide a unifying methodological
and theoretical framework for cognitive modeling
because of the use of both evolutionary and
connectionist techniques and the interaction of the
organisms with a simulated ecology (Parisi, 1997). All
behavioral abilities (e.g., sensorimotor  skills,
perception, categorization, language) are controlled by
the same neural network. This unified framework
permits the study of various factors affecting language
evolution, such as the differences between genetic and
learned communication systems, the adaptive role of
both simple and compositional languages, the neural
control of language, the reciprocal influences between
language and cognition.

Emergence of compositional languages: verbs
and nouns

The evolutionary emergence of messages that combine
two linguistic signals has been studied with ALNN
models. In Cangelosi and Parisi’s (1998) model,
organisms communicate using simple signals that are
genetically inherited. In an extension of the model,
word combination and language learning were
introduced to simulate the emergence of compositional
languages (Cangelosi, 1999; in press). The organisms’
neural networks had two linguistic winner-takes-all
output clusters so that two “words” were
simultaneously uttered to name foods (different types of
mushrooms). Parents acted as linguistic teachers of
their offspring. Children learned to name foods by
imitating their parents’ descriptions using an error
backpropagation algorithm.

The simulation results showed that about 60% of the
populations evolved optimal languages, i.e., languages
in which each category of food was correctly identified
and named. In the remaining populations, only one
category out of six was misclassified. Evolved
languages were classified into three types: (1) Single-



word, where the units in only one cluster are enough to
differentiate all mushrooms; (2) Word-combination,
where symbols from both clusters are needed to
discriminate mushrooms; (3) Verb-Noun, where the
units in one cluster are systematically associated with

high-order categories (e.g., “verbs” for
approaching/avoiding) and the other cluster is used for
differentiating sub-categories (e.g., ‘“nouns” for

mushrooms of different color).
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Figure 1: Distribution of languages in the 18
simulations with communication (at generation 400).

The distribution of language types (Figure 1)
showed that there is a strong evolutionary tendency to
evolve compositional languages, where the syntactic
structure of messages reflects the hierarchical
classification of mushrooms. In fact, the most frequent
(e.g., 64% of good languages) combinatorial structure is
that of predicate-argument, resembling a “verb-noun”
sentence.

Behavioral and Neural Factors in the Evolution
and Acquisition of Language and Syntax

We will now focus on some issues about the acquisition
and use of language, and on their relations with
language evolution studies. These issues regard the
interaction between language and other behavioral
abilities, the stages of the acquisition and evolution of
syntax, and the organization of neural representations in
language processing. The first issue is quite an
important and old one: How does language affect, and
how is it affected by, other cognitive and behavioral
abilities? Various language origin theories stress the
importance of pre-existing sensorimotor knowledge for
effective evolution of linguistic skills. For example,
Rizzolatti and Arbib (1998) proposed a motor theory of
language evolution based on imitation skills. Steels
(2000) showed how his robotics models of language
evolution support this theory. In Cangelosi and Parisi’s
(1998) ALNN model, they showed how language
evolution relies on the evolution of basic cognitive
abilities such as categorization. The dependence of
language on previous sensorimotor skills, and the

effects of language on this behavior will be looked at in
the models presented here.

Researchers interested in both the evolution and the
acquisition of language, are primarily concerned with
the early stages of the development of linguistic
abilities. In particular they focus on the transition from
a non-linguistic stage where sensorimotor abilities
dominate to a phase in which language and other high
order cognitive skills emerge and take control of
cognitive development. Although little empirical
evidence is available for language evolution, data on
language acquisition strongly support the conclusion
that children learn nouns before verbs (Brooks &
Tomasello, 1999). They handle nouns at around 18
months, while verbs are acquired later, from around 24
months. Verbs seem to follow a more gradual
acquisition pattern, passing through an intermediate
stage called “verb islands” (Tomasello, 1992). We will
use data from our simulations to look for similar
learning patterns in language evolution.

The investigation of the neural control of nouns vs
verbs has been the focus of some interesting
neuropsychological and brain imaging studies. For
example, Caramazza and Hillis (1991) looked at the
brain representation of noun and verbs in patients with
brain lesions. Martin, Haxby, Lalonde, Wiggs &
Ungerleider (1995) used PET to show that cortical
sensory areas are active when the color word of an
object is retrieved, while motor areas are involved in
the processing of action words. ALNNs permit the
investigation of internal representations involved in the
processing of different syntactic classes such as nouns
and verbs.

In the next section we will describe a new ALNN
model of the evolution of syntax, specifically the verb-
noun syntactic rule. This simulation will be use to study
in detail the interaction between linguistic abilities and
other behavioral and neural factors.

Evolution of Verb-Noun Languages

The ALNN model described in Cangelosi, 1999 (cf.
also Cangelosi, in press) showed a significant tendency
to evolve compositional languages made up of verb-
noun messages. To study the differences between verbs
and nouns and how verb-noun languages affect and are
affected by other behavioral, cognitive, and neural
factors, a new model with a pre-defined compositional
language will be used. The language includes four
simple linguistic signals (words), two nouns and two
verbs. Nouns are defined as linguistic signals that
covary with the visual input. Verbs are defined as
linguistic signals that covary with the action of the
organism. Messages can include only a noun or only a
verb or they can be a combination of a noun and a verb.



The Model

The task used in the simulation is an object
manipulation task (Schlesinger & Barto, 1999). At any
given time the organism is grasping an object with its
hand and it either pulls the object toward itself or it
pushes the object away from itself. Two different
objects are used, a vertical bar (object A) and a
horizontal bar (object B). The object is perceived
through a retina of 5x5=25 cells corresponding to 25
visual input units. The object occupies either three
vertical cells or three horizontal cells in one of 9
possible locations in the retina. Hence, an object is
encoded as a pattern of 25 bits with three 1s and
twenty-two 0s. In addition to this visual input from the
retina the organism’s neural network receives a
proprioceptive input encoding the current position of
the organism’s two-segment arm. This input is encoded
in 4 input units, with units encoding proprioceptive
information about the two pairs of muscles (extensor
and contractor) of each of the two arm segments.

In the simulations with language the neural network

includes 4 more input units encoding linguistic signals.
Four linguistic signals are used, two nouns and two
verbs, and they are localistically encoded in the 4
linguistic input units One noun designates the vertical
object and a different noun designates the horizontal
object. One verb designates the action of pushing and
the other verb the action of pulling the object. In
different occasions the organism can perceive only a
noun or only a verb or both a noun and a verb.
There are two layers of hidden units that receive
information from the input units and pass it to the 4
output units (Figure 2). The output units control the
extension/contraction of the four arm muscles.
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Figure 2 — The organism’s neural network for the
object manipulation task

The connection weights allowing the neural network
to appropriately manipulate the two objects are
developed using a genetic algorithm. At the beginning
of a simulation 80 genotypes are randomly generated
each encoding the connection weights of a single
individual. These 80 individuals constitute the first

generation. The 20 best individuals are selected for
reproduction, with each individual generating 4
offspring with the same genotype (connection weights)
of its single parent except for the addition of some
random changes to some of the weights (random
mutations). The process is repeated for 2000
generations.

Three experimental conditions were used. In the
first condition, called “No-Language”, an organism
lives for a single epoch consisting of a total of 360
input/output mappings or moves (2 object types x 9
positions x 20 moves per task). Only the retina and the
proprioceptive information are provided as input to the
network. When the organism sees object A, it always
has to push it away from itself; when it sees object B, it
has to pull it towards itself. The fitness formula
computes the total number of tasks successfully
completed.

The second experimental condition is called “Late-
Language”. At generation 1000 a copy of the
populations of the No-Language condition is made.
From this generation onwards the organisms have a
longer lifetime and they are exposed to language. Ten
new epochs with language are added to an individual’s
lifetime, which therefore now includes 11 epochs, 10
with language and 1 without language. In 5 of the
linguistic epochs an individual receives both the
linguistic input and the retina and proprioceptive inputs,
whereas in the remaining 5 epochs only the linguistic
input and the proprioceptive input are present and the
retina input is shut off. The 5 linguistic epochs are as
follows: (1) add noun of the object, (2) add verb
corresponding to the default action (push object A or
pull object B), (3) add verb for opposite action (pull
object A or push object B), (4) add both noun and
default verb, and (5) add both noun and opposite verb.
The various epochs are experienced by an organism in a
random sequence. The same fitness formula is used as
in the No-language case except that in the epochs when
the opposite verb is used, the organism’s action must
reflect what the verb says, not what the object type
would suggest by default.

In the third experimental condition, “Early-
Language”, organisms are exposed to all 11 epochs
from the beginning of the simulation, i.e., from the first
generation. For each condition, 20 replications of the
simulations were run.

Results and Discussion

The average performance of the organism in the three
simulations is reported in Figure 3. For the two
linguistic conditions, only the curve of the performance
in the epoch with no linguistic input is reported, to
allow a direct comparison among the three conditions.
The No-language fitness curve grows until it stabilizes
at around 15.8 successfully completed epochs. In the



Late-Language condition, at generation 1001 the
population goes through a significant drop in
performance. This appears to be due to the fact that the
linguistic input reaches the hidden units through
random weights that disturb the previous good
performance. However, the behavior gradually
improves and from around generation 1400 Late-
Language organisms outperform  No-Language
organisms. The final number of successful tasks is 16.6
for the Late-Language condition. In contrast with this,
the performance of the Early-Language population is
less good than that of both the No-Language and the
Late-Language populations (14.4).
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Figure 3 — Performance in epoch 1 (task without
linguistic input) in the three experimental conditions

These results suggest an interesting hypothesis on
language evolution and the interaction between
linguistic and cognitive skills. To be adaptive language
must be introduced at a later stage, after the cognitive
abilities upon which it will be grounded have fully
evolved. In this condition language has a beneficial
influence on nonlinguistic behavior. If the evolutionary
scenario involves both the practical task of pushing or
pulling objects and the processing of linguistic signals
from the beginning, it is more difficult to evolve
populations with optimal performance in the practical
task. Notice that if language is introduced later so that it
can exploit the already existing (nonlinguistic)
cognitive skills, the beneficial effects of language on
nonlinguistic performance are observed not only when
language is used together with nonlinguistic input (the
language epochs) but also when there is no language
and the organism is responding only to nonlinguistic
input.

We will now focus on the Late-Language simulation
to better understand why language has beneficial effects
on nonlinguistic behavior and to analyze the differences
between the two different classes of linguistic signals:
nouns and verbs.

The 11 epochs of the Late-Language simulation can
be grouped into 4 categories: (1) No-language, (2)
Noun-only (the 2 epochs with and without retina input),

(3) Verb-only (the four epochs with/without retina and
with default/opposite verbs), and (4) Verb+Noun (the
four epochs  with/without retina and  with
default/opposite verbs).

Figure 4 shows the average performance for the
three linguistic categories (categories 2-4) from
generation 1000 to generation 1300. In the early
generations, right after language has been introduced
(from generation 1000 to generation 1100) the
organisms' performance in the Noun-only epochs is
higher than that of Verb-only and of Noun+Verb.
Organisms learn to use nouns earlier than verbs to
benefit their nonlinguistic performance. However, 100
generations later the disadvantage of the verb epochs
disappears. Indeed, the performance for Verb-only and
Verb+Noun epochs becomes stably better than that of
Noun-only epochs.
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Figure 4 — Evolution of noun and verb use in the
Late-Language simulation

The earlier advantage of nouns vs verbs can be
explained by the fact that in the Noun-only epochs the
task is consistent with what has been already learned
without language up to generation 1000. Given this
consistency with prelinguistic experience, nouns are
easier to learn and they can benefit nonlinguistic
performance earlier than verbs. On the contrary, with
verbs organisms must learn to ignore some of the
previously learned knowledge. When an opposite verb
asks the organism to produce a new behavior (e.g., pull
object A instead of pushing it, as previously learned)
this is initially difficult to learn. Therefore, verbs can
acquire an adaptive advantage only in later stages of
language acquisition, when noun use has reached a
good level of performance and stabilization and the
individual can understand the more flexible nature of
verbs, which can typically be predicated of a variety of
arguments. This hypothesis could also explain the
different stages of acquisition of nouns and verbs in
children (Tomasello & Brooks, 1999). Verbs need a
stable class of nouns to fully develop the potential and
flexibility of their predicate-argument structure.




The Late-Language simulation can also be used to
look at some aspects of the neural processing of
language. To this purpose we analyzed the activation
patterns in the second layer of hidden units (Figure 2),
where sensory (retina+proprioception) and linguistic
information come together and they both can have a
role in determining the organism’s motor behavior
encoded in the output units. We used the activation
patterns observed in these hidden units in the first cycle
of each of the 18 motor tasks (9 for object A and 9 for
object B). Each activation pattern can be represented as
a point in the activation hyperspace of the hidden layer,
with the 9 points corresponding to object A making up
a “cloud” of points and the 9 points of object B making
up another “cloud”. We measured both the Euclidean
distance between the centers of the two clouds and the
size of each cloud as the average distance of the 9
points from the center of the cloud. (The points
corresponding to objects/positions incorrectly handled
were excluded from these calculations. On average,
only 0.25 objects per epoch were misclassified.) The
idea is that the successful accomplishment of the task
requires that the different input patterns corresponding
to the same object in different positions be internally
represented as similarly as possible (small clouds) while
the input patterns corresponding to the two different
objects be represented as differently as possible (great
distance between the two clouds).

The between-cloud distances and the sizes of the
two clouds were computed for all 11 epochs. Then the
data were averaged over the 4 categories of epochs: No-
Language, Noun-only, Verb-only, and Noun+Verb.
Figure 5 reports the average withn- and between-cloud
distances at generation 2000. The between-cloud
distances show a progressive increase from the No-
language to the linguistic conditions. In an ANOVA
test, these differences are statistically significant, except
between the pair Verb-Only and Noun+Verb. A similar,
but inverted, pattern of results is found for cloud size.
The average size of a cloud decreases from the No-
language to the linguistic conditions.

That language optimizes the representation of
categories (i.e. increasing between-category distances
and decreasing within-category sizes) has already been
shown in other models (Cangelosi & Harnad, in press).
What this model shows for the first time is that there are
significant differences also between the three linguistic
conditions, in particular between nouns and verbs.
When the network is processing verbs, the size and
distance of clouds is even better than when it is
processing nouns.

How can we explain that verbs have even greater
beneficial effects on nonverbal behavior than nouns? As
we have shown, the beneficial effect of linguistic
signals on nonlinguistic performance is due to the fact
that linguistic signals induce better internal

representations of reality. In our model, reality is
internally represented in the neural network as the
activation patterns observed in the higher layer of
hidden units. The addition of language increases the
distance between the two clouds of points (activation
patterns) representing the two objects and decreases the
size of the two clouds of points each representing one
object. The language-modified clouds make it easier for
the organism to select the appropriate action in response
to the input. However, what is critical in internally
representing reality is not to faithfully reflect the
properties of the input but rather to prepare the motor
output with which the organism must respond to the
input. If the organism must be able to respond to the
same object in different occasions with two different
actions (push or pull) verbs are better than nouns in
shaping the internal representations because while
nouns covary with objects verbs covary with actions.
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Figure 5 — Inter- and intra-categorical distances for
the hidden representations at generation 2000.

Conclusion

The present model focuses on the evolution of an innate
language understanding ability for a language made up
of nouns and verbs. Notwithstanding its obvious
limitations, the models sheds some light on the
reciprocal  influences between language and
nonlinguistic cognition, on the differences between
nouns and verbs, and on the internal organization of
neural networks that use language in an ecological
context. Language has a beneficial effect on
nonlinguistic cognition if it emerges on already existing
basis of nonlinguistic skills, but not if it evolves
together with them. The basis for this beneficial
influence of language on behavior appears to be that
language produces better internal representations of
reality. That is, more similar representations of different
situations that must be responded to with the same
action, and more different internal representations of
similar situations that must be responded to with
different behaviors. Furthermore, verbs have a more
beneficial effect on behavior than nouns because verbs,



by their nature, tend to covary with the organism's
actions while nouns tend to covary with the objects of
reality that may be responded to with different actions
in different occasions.

In this paper we have also done some comparisons
between the computational model of language evolution
and the literature on children’s language acquisition and
on neural processing of verbs and nouns. We are
currently working on an extension of the object
manipulation model to understand better the relations
between language processing and sensorimotor
knowledge (Martin et al, 1995). All in all, we believe
this is a fruitful approach to the investigation of various
adaptive, behavioral, and neural factors involved in the
origin and evolution of language.
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