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Abstract

The human brain is undoubtedly modular, and there are
numerous reasons why it might have evolved to be that
way. Rueckl, Cave & Kosslyn (1989) have shown how a
clear advantage in having a modular architecture can exist
in neural network models of a simplified version of the
“what” and “where” vision tasks. In this paper I present a
series of simulations of the evolution of such neural
systems that show how the advantage can cause
modularity to evolve. However, a careful analysis
indicates that drawing reliable conclusions from such an
approach is far from straightforward.

Introduction

Intuitively, given the obvious potential for disruptive
interference, it seems quite reasonable that two
independent tasks will be more efficiently carried out
separately by two dedicated modules, rather than together
by a homogeneous (fully distributed) system. Certainly
there is considerable neuropsychological evidence that
human brains do operate in such a modular manner (e.g.
Shallice, 1988). In particular, the inference from double
dissociation to modularity is one of the corner stones of
cognitive neuropsychology, and over recent years double
dissociation between many tasks have been established,
with the implication of associated modularity.

Some early neural network models seemed to indicate
that fully distributed systems could also result in double
dissociation (e.g. Wood, 1978) and hence cast some
doubt on the inference of modularity. Since then, the
potential for double dissociation in connectionist systems
with and without modularity has been well studied (e.g.
Plaut, 1995; Bullinaria & Chater, 1995; Bullinaria, 1999),
and the early connectionist double dissociations have
been seen to be merely the result of small scale artefacts.
Several later studies (e.g. Devlin, Gonnerman, Andersen
& Seidenberg, 1998; Bullinaria, 1999) have shown how
weak double dissociation can arise as a result of resource
artifacts (e.g. Shallice, 1988, p232) in fully distributed
systems, but it seems that strong double dissociation does
require some form of modularity, though not necessarily
in the strong (hard-wired, innate and informationally
encapsulated) sense of Fodor (1983). Plaut (1995), for
example, has shown that double dissociation can result
from damage to different parts of a single neural network,
and Shallice (1988, p249) lists a number of systems that
could result in double dissociation without modularity in
the conventional sense. In this paper, I am not so much
interested in showing how double dissociation can arise
in connectionist systems without modularity, but rather,

how modularity can arise in connectionist systems and
hence have the potential for exhibiting double
dissociation.

Of particular interest to us here is the discovery that
visual perception involves two distinct cortical pathways
(Mishkin, Ungerleider & Macko, 1983) — one running
ventrally for identifying objects (“what”), and another
running dorsally for determining their spatial locations
(“where”). Some time ago, Rueckl, Cave & Kosslyn
(1989) considered the interesting question of why “what*
and “where” should be processed by separate visual
systems in this way. By performing explicit simulation
and analysis of a series of simplified neural network
models they were able to show that modular networks
were able to generate more efficient internal represent-
ations than fully distributed networks, and that they
learned more easily how to perform the two tasks. The
implication is that any process of evolution by natural
selection would result in a modular architecture and
hence answer the question of why modularity has arisen.

Now, eleven years later, the power of modern
computer technology has finally reached a level whereby
the relevant explicit evolutionary simulations are now
feasible. Already Di Ferdinando, Calabretta & Parisi
(2001) have established that modularity can evolve. In
this paper, I present the results of further simulations and
conclude that, whilst modularity may arise, the situation
is not quite as straight-forward as the original comput-
ational investigation of Rueckl et al. (1989) suggested.

Learning Multiple Tasks

Nowadays, the basic structure of simple feed-forward
neural network models is well known. We typically use
a three layer network of simplified neurons. The input
layer activations represent the system’s input (e.g. a
simplified retinal image). These activations are passed
via weighted connections to the hidden layer where each
unit sums its inputs and passes the result through some
form of squashing function (e.g. a sigmoid) to produce its
own activation level. Finally, these activations are
passed by a second layer of weighted connections to the
output layer where they are again summed and squashed
to produce the output activations (e.g. representations of
“what“ and “where”). The connection weights are
typically learnt by some form of gradient descent training
algorithm whereby the weights are iteratively adjusted so
that the network produces increasingly accurate outputs
for each input in a set of training data.

In this context, the question of modularity relates to
the connectivity between the network’s hidden and
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Figure 1: Architecture of the basic neural network model for the “what* and “where” tasks.

output layers. During training, a hidden unit that is being
used to process information for two or more output units
is likely to receive conflicting weight update
contributions for the weights feeding into it, with a
consequent degradation of performance relative to a
network that has a separate set of hidden units for each
output unit (Plaut & Hinton, 1987). However, such an
extreme version of modularity with a set of hidden units
(or module) for each output unit is likely to be rather
inefficient in terms of computational resources, and an
efficient learning algorithm should be able to deal
appropriately with the conflicting weight update signals
anyway. Nevertheless, splitting the hidden units up into
disjoint sets corresponding to distinct output tasks, may
be an efficient option. Indeed, it is hard to imagine how
it could be optimal to expect a single set of hidden units
to form more than one distinct internal representation.

It is well known that, when one trains a neural
network using standard gradient descent type learning
algorithms, the processing at the hidden layer tends to
become fully distributed — in other words, there is no
spontaneous emergence of modularity (e.g. Plaut, 1995;
Bullinaria, 1997). However, the human brain is some-
what more sophisticated than a simple feed-forward
network learning by gradient descent, and Jacobs, Jordan
& Barto (1991) have shown explicitly how it is possible
to set up gated mixtures of expert networks that can learn
to process two tasks in a modular fashion. Such systems
appear to have advantages in terms of learning speed,
minimizing cross-talk (i.e. spatial interference),
minimizing forgetting (i.e. temporal interference), and
generalization. In a further computational study, Jacobs
& Jordan (1992) have shown how a simple bias towards
short range neural connectivity can also lead to the
learning of modular architectures.

In this paper, I am more interested in the evolution of
modularity than the learning of modularity. The old
Nature-Nurture debate has come a long way in recent
years (e.g. Elman et al., 1996), but it is still important to
understand which characteristics are innate and which
need to be learnt during ones lifetime. Moreover, as
computer technology becomes more powerful, we are
able to explore these issues by increasingly realistic
simulations. Old ideas about the interaction of learning
and evolution (e.g. Baldwin, 1896) can now be confirmed
explicitly (e.g. Hinton & Nowlan, 1987). In suitably

simplified systems, we have been able to observe the
genetic assimilation of learnt characteristics without
Lamarckian inheritance, see how appropriate innate
values for network parameters and learning rates can
evolve, understand how individual differences across
evolved populations are constrained, and so on (e.g.
Bullinaria, 2001). In the remainder of this paper I shall
consider the evolution of modularity in neural network
models of the “what” and “where” tasks previously
studied by Rueckl et al. (1989). The lessons we learn
here will be applicable to the learning and evolution of
modularity more generally.

The “What” and ‘“Where’> Model

To avoid the need to repeat the extensive analyses of the
learnt internal representations carried out by Rueckl et al.
(1989), I shall study exactly the same simplified neural
network model that they used, and explore whether the
advantages of modularity they observed are sufficient to
drive the evolution of modularity. T shall also follow
Rueckl et al. (1989) and Jacobs et al. (1991) in
emphasizing that the tasks we are simulating are vast
over-simplifications of what real biological visual
systems have to cope with. It makes sense to use them,
however, despite their obvious unrealistic features, since
they allow us to illustrate the relevant factors with
simulations we can perform on current computational
hardware in a reasonable amount of time.

The task consists of mapping a simplified retinal
image (a 5 X 5 binary matrix) to a simplified
representation of “what” (a 9 bit binary vector with one
bit ‘on’) and a simplified representation of “where”
(another 9 bit binary vector with one bit ‘on’). I use the
same 9 input patterns and 9 positions as in the previous
studies, giving the same 81 retinal inputs for training on.
Each of the 9 patterns consist of a different set of 5 cells
‘on’ within a 3 X 3 sub-retina array, and the 9 positions
correspond to the possible centers of a 3 X 3 array within
the full 5 X 5 array.

Figure 1 shows the basic network that was originally
investigated by Rueckl et al. (1989). We have 25 input
units, 18 output units and 81 training examples. The
arrowed lines represent full connectivity, and Nhidl,
Nhidl2, Nhid2 specify how many hidden units in each
block. Rueckl et al. (1989) studied in detail the fully



distributed network (Nhidl = Nhid2 = 0) and the purely
modular network (Nhid12 = 0). Our characterization will
allow us to explore the full continuum between these
extremes. If the maximum number of hidden units Nhid
= Nhidl + Nhidl2 + Nhid?2 is fixed, then we need define
only two innate architecture parameters Conl = Nhidl +
Nhidl2 and Con2 = Nhid2 + Nhidl2 corresponding to the
number of hidden units connecting to each output block.

Simulating Evolution

To simulate an evolutionary process for the models
discussed above, we take a whole population of
individual instantiations of each model and allow them to
learn, procreate and die in a manner approximating these
processes in real (living) systems. The genotype of each
individual will depend on the genotypes of its two
parents, and contain all the appropriate innate parameters.
Then, throughout its life, the individual will learn from
its environment how best to adjust its weights to perform
most effectively. Each individual will eventually die,
perhaps after producing a number of children.

In more realistic situations, the ability of an
individual to survive or reproduce will rely on a number
of factors which can depend in a complicated manner on
that individual’s performance over a range of related
tasks (food gathering, fighting, running, and so on). For
the purposes of our simplified model, however, we shall
consider it to be a sufficiently good approximation to
assume a simple relation between our single task fitness
function and the survival or procreation fitness. Whilst
any monotonic relation should result in similar
evolutionary trends, we often find that, in simplified
simulations, the details can have a big effect on what
evolves and what gets lost in the noise.

I shall follow a more natural approach to procreation,
mutation and survival than many evolutionary
simulations have done in the past (e.g. in Belew &
Mitchell, 1996). Rather than training each member of the
whole population for a fixed time and then picking the
fittest to breed and form the next generation, the
populations will contain competing learning individuals
of all ages, each with the potential for dying or
procreation at each stage. During each simulated year,
each individual will learn from their own experience with
the environment (i.e. set of training/testing data) and have
their fitness determined. A biased random subset of the
least fit individuals, together with a flat random subset of
the oldest individuals, will then die. These are replaced
by children, each having one parent chosen randomly
from the fittest members of the population, who
randomly chooses a mate from the rest of the whole
population. Each child inherits characteristics from both
parents such that each innate free parameter is chosen at
random somewhere between the values of its parents,
with sufficient noise (or mutation) that there is a
reasonable possibility of the parameter falling outside the
range spanned by the parents. Ultimately, the
simulations might benefit from more realistic encodings
of the parameters, concepts such as recessive and

dominant genes, learning and procreation costs, different
inheritance and mutation details, different survival and
procreation criteria, more restrictive mate selection
regimes, protection for young offspring, different
learning algorithms and fitness functions, and so on, but
for the purposes of this paper, the simplified approach
outlined above seems adequate. A similar regime has
already been employed successfully elsewhere
(Bullinaria, 2001) to study the Baldwin effect in the
evolution of adaptable control systems.

The simulated genotypes naturally include all the
innate parameters needed to specify the network details,
namely the architecture, the learning algorithm, the
learning rates, the initial connection weights, and so on.
In real biological evolution, all these parameters will be
free to evolve. In simulations that are designed to
explore particular issues, it makes sense to fix some of
these parameters to avoid the complication of un-
foreseen interactions (and also to speed up the
simulations). In my earlier study of genetic assimilation
and the Baldwin effect (Bullinaria, 2001), for example, it
made sense to keep the architecture fixed and to allow the
initial innate connection weights and learning rates to
evolve. Here it is more appropriate to have each
individual start with random initial connection weights
and allow the architecture to evolve. Then, since the
optimal learning rates will vary with the architecture, we
must allow these to evolve along with the architecture.

It is clearly important to fix the evolutionary
parameters appropriately according to the details of the
problem and the speed and coarseness of the simulations.
For example, if all individuals learn the task perfectly by
the end of their first year, and we only test their
performance once per year, then the advantage of those
that learn in two months over those that take ten is lost
and our simulated evolution will not be very realistic.
Since the networks were allowed to evolve their own
learning rates, this had to be controlled by restricting the
number of training data presentations per year to 10 for
each individual. Choosing a fixed population size of 200
was a trade-off between maintaining genetic diversity
and running the simulations reasonably quickly. The
death rates were set in order to produce reasonable age
distributions. This meant about 5 deaths per year due to
competition, and another 5 individuals over the age of 30
dying each year due to old age. The mutation parameters
were chosen to speed the evolution as much as possible
by maintaining genetic diversity without introducing too
much noise into the process. These parameter choices
led to coarser simulations than one would like, but
otherwise the simulations would still be running.

Experiment 1 — The Basic Model

I began by simulating the evolution of the system as
stated above. For comparison purposes, this involved
fixing the learning algorithm to be that used by Rueckl et
al. (1989), namely online gradient descent with
momentum on the Sum Squared Error cost function E
(Hinton, 1989). As before, the target outputs were taken
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Figure 2: Evolution of the model in Figure 1 with Sum-Squared Error cost function and Log Cost fitness function.
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Figure 3: Evolution of the model in Figure 1 with Cross Entropy cost function and Log Error Count fitness.

to be 0.1 and 0.9, rather than O and 1, and appropriate
outputs beyond these targets were deemed errorless.
Experience indicates that the networks learn better if they
have different learning rates for each of the different
connection layers, and each of the different bias sets. So,
to ensure that the architecture comparisons were fair in
the sense that they were all learning at their full potential,
each network had five learning parameters: the learning
rate 1, for the input to hidden layer, n,; for the hidden
layer biases, 1y, for the hidden to output layer, and 7.,
for the output biases, and the momentum parameter c.
These appear in the standard weight update equation
Aw;(n)=-n, 5W—E+ oAw; (n—1).
y

Each genotype thus contained two parameters to control
the network architecture, and five to control its learning
rates. The Sum Squared Error cost distribution turns out
to be rather skewed across the population, so the
individual evolutionary fitnesses were defined to be
—log(Cost).

I have found in my earlier studies (Bullinaria, 2001)
that the evolution can depend on the initial conditions,
i.e. on the distribution of the innate parameters across the
initial population, and that the population settles into a
near optimal state more quickly and reliably if it starts
with a wide distribution of initial learning rates, rather

than expecting the mutations to carry the system from a
state in which there is little learning at all. Thus, in all
the following experiments, the initial population learning
rates were chosen randomly from the range [0.0. 2.0] and
the momentum parameters randomly from the range
[0.0, 1.0]. Following Rueckl et al. (1989), the initial
weights were chosen randomly within the range [0.0,0.3].
Figure 2 shows how the innate parameters evolved
when there were 18 hidden units in total (which is how
many Rueckl et al., 1989, used). We see that the learning
parameters soon settle down and, after a non-modular
start, the population quickly evolves to take on a modular
architecture with NhidI2 near zero. This is exactly what
we would expect from the Rueckl et al. (1989) study,
right down the to optimal values for Nhidl and Nhid2.

Experiment 2 - Different Costs

The results of Experiment 1 make the evolution of
modularity look almost inevitable. However, it would be
misleading not to report on the countless simulations in
which modularity did not evolve, and which could
equally well correspond to human evolution, with the
implication that modularity in the human brain must
originate in some other manner. Figure 3 shows what
can happen with one particularly reasonable alternative
choice for the gradient descent cost function and
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Figure 4: Comparison of evolved populations with Sum Squared Error (left) and Cross Entropy (right) cost functions.
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Figure 5: Mean learning times with Sum Squared Error (left) and Cross Entropy (right) cost functions.

evolutionary fitness function, namely the standard Cross-
Entropy cost function (Hinton, 1989), and fitness defined
by counting the total number of output units with errors
above some small fixed value (0.2 say). This results in
the evolution of a completely non-modular architecture.
A systematic study reveals that changing the fitness
between —Cost, —log(Cost), 1/Cost, —ErrorCount, and
—log(1+ErrorCount) and has little effect on the results.
However, the choice of cost function is crucial. Figure 4
compares the learning in the evolved populations for the
Sum Squared Error and Cross Entropy cost functions
with —log(1+ErrorCount) fitness. The non-modular
Cross-Entropy population shows a clear superiority.

Although we should not rely on the mean learning
rates to predict what will evolve (since the standard
deviations, the worst and best cases, and so on, are also
important), the plots in Figure 5 of the mean learning
times as a function of the architecture do show quite
clearly where the different optimal configurations (shown
darkest) are situated.

Experiment 3 — Larger Networks

A final worry was that our simulations were suffering
from small scale artefacts. Often when a network has

barely enough hidden units to solve the task at hand, it
behaves differently to when it has plenty of spare
resources (e.g. Bullinaria & Chater, 1995; Bullinaria,
1997). Since 18 hidden units is near minimal for our
task, all of the above simulations were repeated with 36
hidden units. This had little effect on the Cross Entropy
simulations, but the results were rather variable with Sum
Squared Error costs. Sometimes modularity evolved,
sometimes it didn’t, and often mixed populations arose.
Apparently minor variations in the implementational
details, or even just different random number seeds,
could change the results completely.

Figure 6 shows the mean learning times here for
comparison with those for the smaller networks in Figure
5. We see the Cross-Entropy plot has the same non-
modular optimum as before, but the Sum-Squared Error
case is now much noisier, with further, roughly
equivalent, minima appearing in the non-modular regime.
This is presumably why the evolutionary simulation
results were so variable.

Conclusions

I have shown how it is possible to simulate the evolution
of modularity in simple neural network models.
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Figure 6: Large network learning times with Sum Squared Error (left) and Cross Entropy (right) cost functions.

However, drawing conclusions from them about the
modularity in human brains is not so straightforward. If
the results (i.e. modularity versus non-modularity)
depend so crucially on such non-biologically plausible
details as the learning algorithm, then it is clearly going
to be rather difficult to extrapolate from them to
biological systems. On one hand, we might expect that
the human brain has evolved particularly efficient
learning algorithms, in which case we could argue that
the more efficient non-modular cross-entropy populations
are the more realistic. On the other hand, real tasks are
considerably harder than those used in our simulations,
and so the modular populations might be deemed a more
reliable representation of the actual relation between the
human learning algorithm power and task complexity.
The general simulation approach I have presented
appears promising, but future simulations in this area will
clearly have to be much more realistic if we are to draw
reliable conclusions from them.
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