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Abstract

We review the properties of coordinated rhythmic bimanual
movements and previous models of those movements.
Those models capture the phenomena but they fail to show
how the behaviors arise from known components of the
perception/ action system and in particular, they do not
explicitly represent the known perceptual coupling of the
limb movements. We review our own studies on the
perception of relative phase and use the results to motivate
a new perceptually driven model of bimanual coordination.
The new model and its behaviors are described. The model
captures both the phenomena of bimanual coordination
found in motor studies and the pattern of judgments of mean
relative phase and of phase variability found in perception
studies.

Introduction

In coordination of rhythmic bimanual movements, relative
phase is the relative position of two oscillating limbs
within an oscillatory cycle. For people without special
skills (e.g. jazz drumming), only two relative phases can be
stably produced in free voluntary movement at preferred
frequency (Kelso, 1995). They are at 0° and 180°. Other
relative phases can be produced on average when people
follow metronomes, but the movements exhibit large
amounts of phase variability (Tuller & Kelso, 1989). They
are unstable. Preferred frequency is near 1 Hz. As
frequency is increased beyond preferred frequency, the phase
variability increases strongly for movement at 180° relative
phase, but not at 0° (Kelso, 1990). If people are given an
instruction not to correct if switching occurs, then
movement at 180° will switch to movement at 0° when
frequency reaches about 3-4 Hz (Kelso, 1984; Kelso, Scholz
& Schoner, 1986; Kelso, Schoner, Scholz & Haken,1987).
With the switch, the level of phase variability drops. There
is no tendency to switch from 0° to 180° under any changes
of frequency.

These phenomena have been captured by a dynamical
model formulated by Haken, Kelso and Bunz (1985). The
HKB model is a first order dynamic written in terms of the
relative phase, ¢, as the state variable.

The equation of motion, which describes the temporal rate
of change in ¢, that is, ¢-dot, is derived from a potential
function, V(¢), which captures the two stable relative phases
as attractors as show in Figure 1. The attractors are wells or
local minima in the potential layout. As the dynamic
evolves, relative phase is attracted to the bottom of the wells
at 0° and 180°. A noise term in the model causes the

The HKB model: V(¢) =-a COS((‘)) -b cos(zq))
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Figure 1. The HKB model. The parameters a and b
are varied to model changes in the potential as a function of
increases in frequency of movement.

relative phase to depart stocastically from the bottom of a
well. The effect of an increase in frequency is represented by
changes in the potential. The well at 180° becomes
progressively more shallow so that the stochastic variations
in relative phase produce increasingly large departures in
relative phase away from 180°. These departures eventually
take the relative phase into the well around 0° at which
point, the relative phase moves rapidly to 0° with small
variation.

Investigating Phase Perception

We wondered: what is the ultimate origin of the potential
function in this model? Why are 0° and 180° the only stable
modes and why is 180° less stable than 0° at higher
frequencies? To answer these questions, we investigated the
perception of relative phase because the bimanual
movements are coupled perceptually, not mechanically
(Kelso, 1984; 1995). The coupling is haptic when the two
limbs are those of a single person. Schmidt, Carello and
Turvey (1990) found the same behaviors in a visual
coupling of limb movements performed by two different
people. Similar results were obtained by Wimmers, Beek,
and van Wieringen (1992). To perform these tasks, people
must be able to perceive relative phase, if for no other
reason, than to comply with the instruction to oscillate at
0° or 180° relative phase.

For reasons discussed at length by Bingham, Zaal, Shull,
and Collins (2001), we investigated the visual perception of
mean relative phase and of phase variability using both
actual human movements (Bingham, Schmidt & Zaal, 1998)
and simulations (Bingham, et al., 2001; Zaal, Bingham &
Schmidt, 2000) to generate displays of two oscillating balls
viewed side on or in depth. Observers judged mean phase or
phase variability on a 10 point scale. We found that
judgments of phase variability (or of the stability of
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Figure 2. Judgments of phase variability. Mean judgments
of phase variability for movements with 0° phase SD
(Standard Deviation) and at 7 mean phases from 0° to 180°
relative phase. Filled circles: Movement at a freequency of
.75 hz. Filled squares: Movement at 1.25 hz.

movement) followed an asymmetric inverted-U function of
mean relative phase, even with no phase variability in the
movement as shown in Figure 2. Movement at 0° relative
phase was judged to be most stable. At 180°, movement
was judged to be less stable. At intervening relative
phases, movement was judged to be relatively unstable and
maximally so at 90°. Levels of phase variability (0°, 5°,
10°, and 15° phase SD) were not discriminated at relative
phases other than 0° and 180° because those movements
were already judged to be highly variable even with no phase
variability. The standard deviations of judgments followed
this same asymmetric inverted-U pattern. We found that
judgments of mean relative phase varied linearly with actual
mean relative phase. However, as phase variability
increased, 0° mean phase was increasingly confused with 30°
mean phase and likewise, 180° was increasingly confused
with 150°. Also, the standard deviations of judgments of
mean relative phase followed the same asymmetric inverted-
U function found for the means and standard deviations of
judgments of phase variability.

Finally, we investigated whether phase perception would
vary in a way consistent with the finding in bimanual
coordination studies of mode switching from 180° to 0°
relative phase when the frequency was sufficiently increased.
In addition to mode switching, increases in the frequency of
movement yielded increases in phase variability at 180°
relative phase but not at 0° relative phase. As shown in
Figure 2, Bingham, et al. (in press) found that as frequency
increased (even a small amount), movements at all mean
relative phases other than 0° were judged to be more
variable. This was true in particular at 180° relative phase.
Frequency had no effect on judged levels of phase variability
at 0° mean phase.

Results from our phase perception studies are all
consistent with the findings of the studies on bimanual

coordination. The asymmetric inverted-U pattern of the
judgments is essentially the same as the potential function
of the HKB model. The potential represents the relative
stability of coordination or the relative effort of maintaining
a given relative phase. The two functions match not only
in the inverted-U shape centered around 90° relative phase,
but also in the asymmetry between 0° and 180°. 180° is less
stable than 0°. This congruence of the movement and
perception results supports the hypothesis that the relative
stability of bimanual coordination is a function of the
stability of phase perception. So, we developed a new
model of bimanual coordination in which the role of phase
perception is explicit.

Modelling the single oscillator

The HKB model is a first order dynamical model in which
relative phase is the state variable. That is, the model
describes relative phase behavior directly without reference to
the behavior of the individual oscillators. The model was
derived from a model formulated by Kay, Kelso, Saltzman
and Schoner (1987) that does describe the oscillation of the
limbs explicitly. In this latter model, the state variables are
the positions and velocities of the two oscillators. To
develop this model, Kay, et al. (1987) first modelled the
rhythmic behavior of a single limb. In this and a
subsequent study (Kay, Saltzman & Kelso, 1991), they
showed that human rhythmic limb movments exhibit limit
cycle stability, phase resetting, an inverse frequency-
amplitude relation, a direct frequency-peak velocity relation,
and, in response to perturbation, a rapid return to the limit
cycle in a time that was independent of frequency. A
dimensionality analysis showed that a second-order dynamic
with small amplitude noise is an appropriate model. The
presence of a limit cycle meant the model should be
nonlinear and a capability for phase resetting entailed an
autonomous dynamic. (Note: Phase resetting means that the
phase of the oscillator was different after a perturbation than
it would have been if not perturbed. An externally driven or
non-autonomous oscillator will not phase reset because the
external driver enforces its phase which is unaffected by
perturbation of the oscillator.) Kay, et al. (1987) captured
these properties in a 'hybrid' model that consisted of a linear
damped mass-spring with two nonlinear damping (or
escapment) terms, one taken from the van der Pol oscillator
and the other taken from the Rayleigh oscillator (hence the
'hybrid") yielding:

X+bk+ocx3+yx25(+ kx=0 (1)

This model was important because it captured the principle
dynamical properties exhibited by human rhythmical
movements. However, the relation between terms of the
model and known components of the human movement
system was unclear. The damped mass-spring was
suggestive of Feldman's A-model of limb movement (also
known as the equilibrium point or mass-spring model). The
A-model represents a functional combination of known
muscle properties and reflexes. Nevertheless, in the hybrid
model, the functional realization of the nonlinear damping
terms was unknown.

Following a strategy described by Bingham (1988),



Bingham (1995) developed an alternative model to the hybrid
model. All of the components of the new model explicitly
represented functional components of the perception/action
system. The model also incorporated the A-model, that is,
a linear damped mass-spring. However, in this case, the
mass-spring was driven by a perceptual term. Limb
movements are known to exhibit organizations that are both
energetically optimal and stable (e.g. Diedrich & Warren,
1995; Margaria, 1976; McMahon, 1984). Both energy
optimality and stability are achieved by driving a damped
mass-spring at resonance, that is, with the driver leading the
oscillator by 90°. Accordingly, Hatsopoulos and Warren
(1996) suggested that this strategy might be used in driving
the Feldman mass-spring organization to produce rhythmic
limb movements. However, a driver that is explicitly a
function of time would yield a nonautonomous dynamic,
that is, a dynamic that would not exhibit phase resetting.
Bingham (1995) solved this problem by replacing time in
the driver by the perceived phase of the oscillator. That is,
instead of Fsin(t), the driver is Fsin(¢), where ¢ is the
phase. Because ¢ (= f[x, dx/dt]) is a (nonlinear) function of
the state variables, that is, the position and velocity of the
oscillator, the resulting dynamic is autonomous. The
perceptually driven model is:

X+ bx+kx=csinlQ] (2)

where
Xn . . _—
O = arcta — > x,=xNEK and ¢ = ¢ (k).

The amplitude of the driver is a function of the stiffness.
Bingham (1995) showed that this oscillator yields a limit
cycle. This is also shown in Figure 3 by rapid return to the
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Figure 3. Phase portrait of the single perceptually driven
oscillator. Movement starts at 1 hz and increases gradually
to 6 hz. Early in the movement while still at 1 hz, the
movement was perturbed by a 50ms pulse. Rapid return to
the limit cycle within about 1 cycle is shown. Also shown
is the decrease in amplitude and the increase in peak velocity
that accompanies the increase in frequency.

limit cycle after a brief perturbing pulse. As also shown,
the model exhibits the inverse frequency-amplitude and direct
frequency-peak velocity relations as frequency was increased
from 1 hz to 6 hz. Finally, the model exhibits a pattern of
phase resetting that is similar to that exhibited by the hybrid
oscillator. Goldfield, Kay and Warren (1993) found that
human infants were able to drive a damped mass-spring at
resonance. The system consisted of the infant itself
suspended from the spring of a "jolly bouncer" which the
infant drove by kicking. This instantiates the model and
shows that even infants can use perceived phase to drive
such an oscillator at resonance. We hypothesize that all
rhythmic limb movements are organized in this way.

Once again, the components are the Feldman mass-spring
(composed of muscle and reflex properties) and a driver that
is a function of the perceived phase of the oscillator.

Modeling Coupled Oscillators
With this model of a single oscillating limb, we were ready
to model the coupled system. Kay, et al. (1987) had
modeled the coupled system by combining two hybrid
oscillators via a nonlinear coupling:

X1+bxl+ocxi’+yx21 x; + kxg =
(x;—-x)la+b(x; - x, )21

o . -3 2 .

X2+bX2+(XX2+'YX2X2+kX2=
(Xp-x)la+b(xy-x) (3)

This model required that people simultaneously perceive the
instantaneous velocity difference between the oscillators as
well as the instantaneous position differences so that both
could be used in the coupling function. This model did yield
the two stable modes (namely, 0° and 180° relative phase) at
frequencies near 1 hz, and mode switching from 180° to 0°
relative phase at frequencies between 3 hz and 4 hz.

We propose an alternative model in which two phase
driven oscillators are coupled by driving each oscillator
using the perceived phase of the other oscillator multiplied
by the sign of the product of the two drivers (P). This sign
simply indicates at each instant whether the two oscillators
are moving in the same direction (sign = +1) or in opposite
directions (sign = —1). The model is:

where

P = sgn(sin({ 1) sin(Qy) + a(x; - xp) N¢) o (5)

P represents the perceived relative phase. As shown in
equation (5), the product of the two drivers is incremented by
a gaussian noise term with a time constant of 50 ms and a



variance that is proportional to the velocity difference
between the oscillators. This noise term reflects known
sensitivities to the directions of optical velocities (De Bruyn
& Orban, 1988; Snowden & Braddick, 1991) and is
motivated by results from phase perception experiments
(Collins & Bingham, 2000). This model also yields only

two stable modes (at 0° and 180° relative phase) at
frequencies near 1 hz, and, as shown in Figure 4, yields
mode switching from 180° to 0° relative phase at frequencies
between 3 hz and 4 hz. Furthermore, the model predicts our
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Figure 4. Continuous relative phase from a run of the
perceptually coupled model starting at 1 hz and 180° relative
phase. Frequency was increased progressively to over 4 hz.
Relative phaase became progressively more variable and
switched to 360° = 0° at 4 hz. (Note: Frequecy =
sqrt(Time+1).)

results for judgments of mean relative phase and of phase
variability. (See e.g. Figure 5.) Judged mean phase is
produced by integrating P over a moving window of width ¢
(= 2s) to yield Pypy.

J‘ Pdt

220 (6)

P —
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Judged phase variability is predicted by integrating (P—
Pjynm)? over the same window to yield Pyy:

j I ST

t-o (7)
(o}

Py varies linearly with actual mean phase and Pjy yields
an asymmetric inverted-U as a function of actual mean
phase.

There are two aspects of the perceptual portions of the
model that should be emphasized. First, there are actually
two perceptible properties entailed in the model. The two
are very closely related, but they are distinct. The first is the
phase of a single oscillator. The perception thereof is
entailed in the single oscillator model. This is, of course,
incorporated into the coupled oscillator model. The second
perceptible property is relative phase. This latter property
brings us to the second aspect of the model to be noted.
This is especially important.

This model is being used to model performance in two

different tasks, one is a coordinated movement task and the
other is a judgment task. Equation (5) represents the way
the perception of relative phase plays a role in the
coordinated movement task. This is in terms of the
momentary value of P, that is, whether the oscillators are
perceived to be moving in the same or in opposite directions
at a given moment in time. Equations (6) and (7) represent
the way the perception of relative phase plays a role in the
judgment tasks. In this case, the behavior of P is assessed
(that is, integrated) over some window of time that is large
enough to span one or two cycles of movement. So, the
two tasks are connected by a single perceptible property, but
the way the property is evaluated and used is task-specific.
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Figure 5. Model predictions of judgments of phase
variability at a number of different mean relative phases and
at three different frequencies of movement. The model was
forced to relative phases other than 0° and 180° to obtain
these results.

Conclusions

The model captures both the movement and the perception
results. It exhibits the fundamental properties of human
rhythmic movements. It builds on the previous task-
dynamic modeling results of Kay et al. (1987) and Kay et al.
(1991) which revealed fundamental dynamic properties of
human movement. Those properties are captured by the new
model as they were by previous models. However, unlike
the previous models, the new model’s components are
interpretable in terms of known components of the
perception/action system. It explicitly represents the
perceptual coupling that is well recognized to be
fundamental to the coordination task and the resulting
bimanual behaviors. This is important because we can now
proceed to investigate the perception component (no less
important than the properties of muscle in the Feldman
component) to discover the origin of some of the dynamic
properties of these perception/action systems. This is an
explicit perception/action model.

Finally, although its behaviors are extremely complex,



the model itself is relatively simple and elegant. Two
relatively simple equations (4) capture limit cycle stability,
phase resetting, inverse frequency-amplitude and direct
frequency-peak velocity relationships, the stable modes and
mode transitions and the increasing patterns of instability
leading up to mode transition. With the addition of two
more simple equations (6) and (7) computing a mean and a
variance, the model accounts for the results for perceptual
judgments of mean relative phase and of phase variability
and the ways these vary with the frequency of movement.
All this from a model with 5 parameters (k, b, c, ¢, and o),
four of which are fixed and one, k, is varied to generate
variations in frequency of movement. (Note: because c=f(k),
¢ varies with k but once the scaling of c is fixed, this does
not represent an extra degree of freedom.) The model is
representative of nonlinear dynamics: complex behavior
emergent from simple dynamic organization.
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