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Abstract

M any natural categories vary along m ultiple dim ensions.
The present studies address tw o m ain questions 
underlying categorization with m ultiple dim ensions.
First, how well can hum ans perform  in a categorization 
task consisting of five categories varying along nine 
continuously valued dim ensions?  Second, what are the 
properties of the cues preferred by humans if not all the 
available cues are used?  Rem arkably, participants not 
only learned to distinguish am ong the five categories, but 
they also learned to do so using only the relevant 
dim ensions.  A satisficing m odel of categorization was 
bestable to account for participants’ responses. In 
addition, in a cue preference task, the results showed that 
nearly all participants preferred to use the dim ension 
with the greatest variance when the num ber of
dim ensions available was restricted, in accord with
predictions m ade by the satisficing m odel.

Introduction
Categorization has been studied by m any disciplines 
including psychology and m achine learning. In the area 
of psychology, the psychological processes underlying 
hum an categorization have been investigated.  One 
com m on approach to determ ining these processes has 
been to teach hum ans to learn novel categories based on 
very sim ple stim uli that vary along only a few
dim ensions.  In such sim ple situations, the com plex
calculations involved in som e of the popular m odels of 
categorization (e.g., Nosofsky’s (1986) generalized
context m odel; Ashby’s (Ashby &  Gott, 1988; Ashby &  
Perrin, 1988) decision bound theory) m ay be
psychologically plausible.  However, the results of
these experim ents are then assum ed to be generalizable 
to categories whose m em bers vary along m any
dim ensions.  It seem s unreasonable to assum e that 
hum ans are capable of the even m ore com plex
calculations required with an increase in category
dimensionality.  For example, Nosofsky, Palmeri, and 
M cKinley (1994) “question the plausibility of exemplar 
storage processes and the vast m em ory resources that 
they seem  to require” (p.53).
M achine learning, on the other hand, has been prim arily 
concerned with developing algorithm s based on experts 
in specific domains (Quinlan, 1986) -- although the 
algorithm s them selves tend to be general-purpose
algorithm s (i.e., the algorithm s are intended to apply to 
any categorization task).  These algorithm s have been 
developed using large data sets that vary along m any 

dim ensions.  Therefore, an im portant step in such
algorithm s is determ ining which dim ensions from  the 
set of possible dim ensions should be used.  However, 
the different m ethods used to m odel this step usually 
involve com plex com putations and thus are also not 
psychologically plausible.
W hat follows is a brief review of two popular
categorization m odels (exem plar m odels and decision 
bound theory), as well as a review of a satisficing 
model of categorization (categorization by elimination).
Next, a multi-dimension, multi-category task is
described, including a discussion of how well the above 
three m odels can account for hum an responses in such a 
task. The paper concludes with a brief discussion on the 
learning of relevant cues in the m ulti-dim ension, multi-
category task.

Review of M odels

Exem plar M odels
Exemplar models (Brooks, 1978; Estes, 1986; M edin & 
Schaffer, 1978; Nosofsky, 1986) assum e that when
presented with a novel object, hum ans com pute the 
sim ilarity between that object and all exem plars of
every category in which the novel object could be
placed.  In theory, the object is placed into the category 
with which it is most similar, however most exemplar 
m odels assum e probability m atching. Nosofsky’s
(1986) generalized context model (GCM ) allows for
variation in the am ount of attention given to different 
features during categorization (see also M edin &
Schaffer, 1978).  Therefore, it is possible that different 
cues will be used in different tasks.  However, this 
attention weight rem ains the sam e for the entire
stim ulus set for each particular categorization task,
rather than varying across different objects belonging to 
the sam e category.  GCM  uses a probabilistic response 
rule based on the Luce-Shepard choice m odel.  The 
probability of placing stim ulus i into category j is 
com puted by sum m ing the sim ilarity between stim ulus i 
and all objects in category j along every dim ension and 
then weighting the sum m ed sim ilarity by the bias to 
respond with category j.  The weighted sum m ed
similarity is divided by the sum  of the weighted
sum m ed sim ilarity of stim ulus i to each category.
Sim ilarity is usually either an exponential (for separable 
stim uli) or gaussian (for integral stim uli) function of 
psychological distance (Shepard, 1964).  Psychological 



distance is com puted by the M inkowski r-metric with 
the addition of two param eters, c and wk, where c is the 
discrim inability param eter which takes into account that 
stimuli will look more distinct as experience is gained 
and wk is the attention weight for the kth dim ension. 

Decision Bound Theory
Decision Bound Theory (or DBT--see Ashby &  Gott, 
1988) assum es that there is a m ultidim ensional region 
associated with each category, and therefore, that
categories are separated by bounds.   DBT uses a 
deterministic response rule.  An object is categorized 
according to the region of perceptual space in which it 
lies.  The perceptual space is divided into regions by 
decision bounds.   For two categories (A and B) each 
com posed of two dim ensions (x and y), an object will 
be placed into category A if the estim ated likelihood 
ratio is greater than som e bias, where the likelihood 
ratio refers to the ratio between the likelihood that 
stim ulus i com es from  category A and the likelihood 
that stim ulus i com es from  category B.  The param eters 
of this m odel are b, a response bias;a m ean and 
variance for each dim ension (which are usually
absorbed into the bound param eters); correlations
between pairs of dim ensions; as well as param eters to 
define the decision bound.
Both of these psychological m odels categorize by
integrating cues and using all the cues available (except 
in exem plar m odels if a cue has an attention weight of 
zero).  But the m em ory requirem ents of these m odels 
do differ.  GCM  assumes that all exemplars ever
encountered are stored and used when categorizing a 
novel object, while DBT only needs to store the bound-
determ ining param eters of each category.  In
com parison, the Categorization by Elim ination
algorithm  (described below) typically requires as little 
memory as DBT but it does not integrate all available 
cues.

Categorization by Elim ination
Categorization by Elimination (CBE) was originally
developed to describe people’s categorization
judgm ents in an anim ate m otion task (see Blythe,
M iller, & Todd, 1996). CBE is closely related to
Tversky’s (1972) Elim ination by Aspects m odel of
choice. CBE is a noncom pensatory m odel of
categorization, in that it uses cues in a particular order, 
and categorization decisions m ade by earlier cues
cannot be altered (or com pensated for) by later cues.  In 
CBE, cues are ordered and used according to their
probability of success.  For the present purpose
probability of success is defined as a m easure of how 
accurately a single cue categorizes som e set of stim uli 
(i.e., percent correct).  This is calculated by running 
CBE only using the single cue in question, and seeing 

how m any correct categorizations the algorithm  is able 
to m ake.  (If using the single cue results in CBE being 
unable to decide between m ultiple categories for a
particular stim ulus, as will often be the case, the
algorithm  chooses one of those categories at random--in
this case, probability of success will be related to a 
cue’s discrim inatory power.)
CBE assum es that cue values are divided up into bins 
(either nominal or continuous) which correspond to 
certain categories.  To build up the appropriate bin 
structures, the relevant cue dim ensions to use m ust be 
determ ined ahead of tim e.  At present, com plete bin 
structures are constructed before testing CBE’s
categorization perform ance.  Bins can be constructed in 
a variety of ways from  the training exam ples by
determ ining low and high cue value boundaries for each 
category on each dim ension.  These boundaries are then 
used to divide up each dim ension into the cue-value
ranges that form  the bins.  Thus, CBE only needs to 
store two values per category per cue dim ension,
independent of the num ber of objects encountered.

Categorization with M ultiple Dim ensions
The m ajority of psychological studies of categorization 
have used sim ple artificial stimuli (e.g., semicircles in 
two-dim ensional space -- Nosofsky, 1986) that vary on 
only a few (two to four) dim ensions1.  This is in 
contrast to the m ore natural high-dim ensionality
m achine learning applications, such as wine tasting 
(Aeberhard, Coomans, & Devel, 1994) or handwriting 
recognition (M artin & Pittman, 1991).  It remains to be 
dem onstrated how optim al hum ans can be when
categorizing objects using m any continuously valued 
dim ensions.  In addition, the predom inant psychological 
m odelsof categorization have not addressed the issue 
of how people can categorize a m ultidim ensional object 
when they are constrained by lim ited inform ation.
Berretty and her colleagues (Berretty, Todd, &
M artignon, 1999; Berretty, Todd, & Blythe, 1997) have 
illustrated that it is possible for a satisficing m odel that 
does not use all the available cues to categorize objects, 
to perform  com parably to integrative m odels on natural 
data sets.  The purpose of the first experim ent in this 
paper is to investigate whether such a satisficing m odel 
is able to account for hum an categorization data from  a 
multi-dimensional, multi-category task.  In Experiment 
1a, hum ans are trained to learn categories that vary 
along nine dim ensions. The generalized context m odel, 
categorization by elim ination, and a form  of decision 
bound theory will be tested to determ ine how well each 
m odel fits the participants’ responses.  The purpose of 
the second experim ent is to determ ine how well hum ans 

1 Posner and Keele (1968) have used random  dot stim uli to 
test hum an classification, however, the num ber of dim ensions 
is indeterm inable.



are able to categorize when inform ation is limited.  In 
addition, Experim ent 1b investigates the properties of 
the dim ensions people prefer to use when inform ation is 
limited.

Participants
Four graduate students from  the University of
California, Santa Barbara participated in Experiment 1a 
and 1b.  All participants had norm al or corrected vision.
Each participant was paid $8 per hour.

M ethod
DesignThe design consisted of five different categories 
that vary along nine dim ensions, where only three of 
the dim ensions are necessary for accurate
categorization.  The values for each category were
generated from  a m ultivariate norm al distribution where 
variance(dim 1) > variance(dim 3) > variance(dim 2), 
with the variance for the rem aining 6 dim ensions equal 
to the variance along dim ension 3.  All uni-dim ensional
rules that best separate two categories with the sam e 
m ean on the other two relevant dim ensions have an 
accuracy of 90%  (i.e., category overlap along each pair 
of dim ensions was set to 10% ).

Procedure Participants were told that they were to 
learn five different categories that were equally
represented during each learning session.  Participants 
were instructed that they m ay or m ay not need to use all 
the dim ensions available to them .  Participants were run 
over consecutive days until learning curves leveled off.
Each day consisted of 20 blocks with 50 trials per block 
(for a total of 1000 trials per day).  Stimulus display 
was response term inated and corrective feedback was 
given after every trial.  Thus, if a subject responded ‘A’ 
to an exemplar from  category B, a low tone sounded 
followed by a ‘B’ appearing on the screen.  In addition, 
overall percent correct was given after every learning 
block.
A cue preference task (Experim ent 1b) was
adm inistered to participants the day after learning
ended.  The cue preference day began with a practice 
block in which participants sim ply categorized 50
stim uli as they had done on previous days.  The practice 
block was followed by twelve blocks, each consisting 
of 50 trials.  Each trial began with the presentation of 
one of the three relevant dim ensions.  Participants then 
m ade a categorization judgm ent based on only that one 
dim ension.  After m aking a judgm ent, participants
chose another dim ension and then m ade another
categorization judgm ent.  Thus, two judgm ents were 
m ade for the sam e stim ulus.  The first judgm ent was 
based on only one experim enter-chosen dim ension,
while the second judgm ent was based on two
dim ensions.  No feedback was given during the last 
twelve blocks of the test day. 

Stim uli and M aterials Stim uli were generated using 
the GRT Toolbox (Alfonso-Reese, 1995).  Values along 
every dim ension were transform ed from  num ber of dots 
per square into actual screen coordinates.  Each
dim ension was represented as a texture in one of nine 
possible squares on a com puter screen.  The location of 
the three relevant dim ensions was different for each 
subject with the constraint that the center square (in a 
3x3 grid) will never be one of the relevant dim ensions. 
Stim uli were presented on a SuperM ac Technology 17T
Color Display driven by a Power M acintosh G3 running 
a Psychophysics Toolbox (Brainard, 1997) and low-
level VideoToolbox (Pelli, 1997) within M ATLAB
(The M athW orks, Inc., 1998).  Each participant sat 18 
inches from  the m onitor.  The height of the center
square of the stim uli was constrained such that visual 
angle was less than 2°.

Results and Discussion

Experim ent 1A Learning for three of the four
participants reached asym ptote after five days, while 
the fourth participant required six days.  Participants 1,
2, and 3 achieved an overall accuracy of approxim ately 
70%  by the last day, while Participant 4 only achieved 
an overall accuracy of approxim ately 60%  on the last 
day. The optim al percent correct was 81.9% .
Participants’ responses for the last day (without the first 
block) were random ly split into two halves (training 
and testing sets) five tim es.  Each split was constrained 
to contain approxim ately the sam e num ber of stim uli 
from  each category. 
The Categorization by Elimination algorithm, the
Deterministic Generalized Context M odel (see Ashby 
&  M addox, 1993), and six versions of Decision Bound 
Theory were fit to each participant’s training set
responses.  For CBE, low and high values of each bin 
along each dim ension, as well as the cue order, were 
estim ated from  the responses in the training set.  The 
param eters estim ated for GCM  were the sensitivity
param eter, an attention weight for each dim ension, the 
bias towards each category, and the gam m a param eter 
(which is a m easure of response selection).  For fitting 
the GCM , a Euclidean-Gaussian distance-similarity
m etric was used (see M addox &  Ashby, 1998).
The six versions of DBT were all Independent
Decisions Classifiers, which is a special case of
Decision Bound Theory in which each dim ension is 
assum ed to be independent of the other dim ensions (see 
Ashby &  Gott, 1988; Ashby &  M addox, 1990).  This 
version of DBT was used since the best fitting bound 
(to separate the categories) is perpendicular to each of 
the three relevant dim ensions.  In the versions of the
Independent Decisions Classifier tested here, one
criterion is placed along one dim ension.  Two criteria 
are then placed along a second dim ension and four 
criteria are placed along the third dim ension.  All



Table 1: AIC Scores for Experiment 1A

P1
Train

P1
Test

P2
Train

P2
Test

P3
Train

P3
Test

P4
Train

P4
Test

GCM 585.4 633.6 739.42 823.08 647.33 687.14 814.4 835.24
DBT 594.74 638.16 742.63 780.87 645.32 665.22 809.55 824.54
CBE 646.28 643.59 638.32 640.36 624.5 634.86 656.04 646.85

possible combinations of the three relevant dim ensions 
were tested.
As m entioned earlier, all three m odels were fit to part 
of the data set (the training set) and the best fitting 
param eters estim ates were obtained.  These param eters 
were then used to determ ine the m odels’ accuracy on 
the rem aining data (the testing set).  A potential
problem with multi-param eter m odels is that these
m odels m ay be prone to overfit the data.  That is, they 
actually fit the noise present in the data in order to 
achieve high accuracy.  Training the m odel on a subset 
of the data and testing the m odel on the rest of the data 
m ay assess a m odel’s “true” perform ance.
The AIC goodness-of-fit statistic was used to com pare 
the fits of the three m odels.

AIC(M i) = -2lnLi + 2vi
W here lnLI refers to the negative log likelihood value 
for model M i obtained through maximum likelihood 
estim ation and vi refers to the num ber of free
param eters in m odel Mi.  The sm aller the AIC score, 
the closer the m odel is to the “true” m odel (Ashby, 
1992).
Goodness-of-fit values for each participant (averaged 
over the five training and five testing sets) are shown in 
Table 1.  Each row corresponds to one of the three 
m odels while each colum n refers to each participant’s 
training and testing sets.  The generalized context
m odel was best able to account for Participant 1’s 
training and testing data.  Categorization by elim ination 
was best able to account for Participant 2, Participant 3, 
and Participant 4’s training and testing data.

Experim ent 1B Experiment 1b was designed to answer 
two questions.  First, how well can hum ans perform  in a 
categorization task when dim ensionality is reduced?
Second, what are the properties of the dim ensions 
preferred by hum ans?  Obviously, one of the m ost 
im portant features of a cue is how accurate that cue is 
in categorizing objects when used alone.  Another
property of cues is the range of values possible, that is, 
the variance of a cue.  It seem s reasonable to assum e 
that hum ans are able to learn the accuracy of various 
cues and would use those cues that are m ore accurate.
Given this assum ption, all three of the relevant
dim ensions are equally accurate when used alone.
However, the question of whether hum ans prefer to use 
cues with m ore or less variance is addressed by having 
different variances for the three relevant dim ensions.

In Experim ent 1b (conducted after perform ance
asym ptotes) participants were given one dim ension and 
asked for a categorization judgm ent.2  Participants then 
chose a second dim ension (from  the rem aining eight 
dimensions) and m ade a categorization judgm ent based 
on only those two dim ensions. Only the three relevant 
dim ensions for the categorization task were used in 
Experim ent 1b as the first cue presented to the
participant.  Both high and low values of these
dimensions were given to the participants.  Dim ension 
values were selected from  the categories such that the 
values were always less than (or greater than) the best 
fitting criteria values for that dim ension (i.e., only
dim ensional values from  nonoverlapping category
regions were presented).
The first m ajor result to notice from  this experim ent is 
the overall percent correct participants achieved, which 
is shown in Table 2.  The optim al percent correct 
possible with only two categories is 51.6% . Participant 
3 was very close to optim al, while Participants 2 and 4 
actually perform ed better than would be expected.  In 
addition, Participant 4 actually perform ed better in
Experiment 1b than in Experiment 1a!

Table 2: Overall Percent Correct in Experiment 1B

Participant
1 2 3 4

Percent
Correct

42.67 55.23 49.83 64.5

The results from  Experim ent 1b indicate that
participants did indeed learn which of the cues in 
Experiment 1a were relevant.  All four participants
chose (nearly always, if not always) one of the three 
relevant dim ensions as their second cue in Experim ent 
1b (see Table 3).  This indicates that participants were 
not using any of the other dim ensions during
Experiment 1a3.

2 Participants were given the first cue to insure that all three of 
the relevant dim ensions would be chosen.  If participants were 
allowed to choose the first cue to use, it is possible that the 
sam e cue would be used first for each trial.
3 This does not rule out the possibility that participants were 
using other dim ensions in Experim ent 1a, but preferred to use 
one of the three relevant dim ensions when lim ited in the 
num ber of dim ensions available to them .  However, verbal 



Table 3: Dimension Preference for Participants 1-4

Dim ension Chosen by Participant 1Dimension
Presented 1 2 3 4-9

1 23 150 25 0
2 188 9 2 0
3 186 11 0 0

Dim ension Chosen by Participant 2
1 2 3 4-9

1 9 80 103 1
2 86 3 100 5
3 91 88 7 7

Dim ension Chosen by Participant 3
1 2 3 4-9

1 16 162 22 0
2 162 5 27 0
3 186 9 4 0

Dim ension Chosen by Participant 4
1 2 3 4-9

1 15 45 134 0
2 113 0 87 0
3 133 59 8 0

According to CBE when dim ension 1 is presented,
dim ension 3 should be chosen and when dim ension 2 or 
3 is presented, dim ension 1 should be chosen.  W hen
dim ension 1 was presented first two of the participants 
preferred the dim ension with the highest probability of 
success (dim ension 3).  W hen dim ension 2 was
presented first, three of the participants preferred the 
dim ension with the highest probability of success 
(dim ension1). All four participants preferred the
dim ension with the highest probability of success
(dim ension 1) when dim ension 3 was presented first.
Overall, the participants generally chose the second 
dim ension in accord with predictions m ade by CBE.

Learning Relevant Cues
Given the difficulty of the task in Experiment 1a, it is 
rem arkable that the participants were able to learn the 
relevant cues.  As shown above, all four participants 
chose (nearly always, if not always) the three relevant 
dim ensions as their second cue in Experim ent 1b.  But 
how did cue use progress as the participants learned the 
different categories in Experim ent 1a?  To answer this 
question three different versions of M DS were fit to the 
participants’ category confusion m atrices from  each 
half of each day in order to determ ine how m any cues 
were used by each participant for a particular data set.
M DS1 uses only one dim ension, M DS2 uses two
dim ensions, and M DS3 uses three dim ensions to

protocol collected at the end of the experim ent indicated that
participants were only using three dim ensions during 
Experim ent 1a.

account for the participants’ confusions. A χ2 analysis 
was perform ed on the differences between the fit values 
for m odels differing in one dim ension.  These results 
are reported in Table 4.
For participant 1, an M DS choice m odel using two 
dim ensions did fit the responses better than an M DS
choice m odel using only one dim ension for day 2.  By 
day 4, an M DS choice m odel using three dim ensions 
did obtain a significantly higher fit value than an M DS 
choice m odel using only two dim ensions.  These results 
indicate that participant 1 used only one dim ension on 
day 1, two dim ensions on days 2 and 3, and three 
dim ensions on days 4 and 5.4  Similarly, the M DS 
analysis indicates that participants 2 and 3 used only 
one dim ension on the first half of day 1, two
dim ensions on the second half of day 1, and three 
dim ensions after day 1.  Participant 4 appeared to use 
only one dim ension on the first half of day 1, two 
dim ensions on days 2 and 3, and three dim ensions on 
days 4 through 6. Taken with the results from
Experim ent 1b, it appears that participants not only 
increased over days the num ber of cues used when 
categorizing, but also learned the correct (or relevant) 
cues to use to accurately categorize.
Given a task consisting of m any dim ensions, it is clear 
that participants begin by using only one dim ension.
Additional dim ensions are then learned in a sequential 
fashion.  W hat is rem arkable from  these data, is that 
participants learned to use all three dim ensions.
Dim ension 1 had m ore variance than any of the other 
eight dim ensions while dim ension 2 had less variance 
than any of the other eight dim ensions.  Therefore, it is 
not surprising that participants were able to learn these 
two dim ensions (i.e., the two dim ensions out of nine 
that had differing variances).  Dim ension 3 on the other 
hand, had the sam e am ount of variance as the six
irrelevant dim ensions, yet participants learned by the 
end of the experim ent that this dim ension was
necessary for accurate categorization. 

Conclusion
In conclusion, the studies reported here show that 
hum ans are able to learn artificial multidimensional
categories.  It was also shown that people are able to 
distinguish relevant from  irrelevant dim ensions in
m ultidim ensional categorization tasks.  Results from
such a task indicate that a satisficing m odel is best able 
to account for the participants’ responses.  In addition, 
the predictions m ade by the satisficing m odel regarding 
cue preference were shown to be in accord with the cue 

4 Note, that on the last half of day 5, the increase in 
param eters used by and M DS choice m odel with three 
dim ensions did not fit the data significantly better than an 
M DS choice m odel with less param eters (i.e., less
dim ensions).



Table 7: Χ2
diffValues for Participants 1

Participant 1 Participant 2 Participant 3 Participant 4

Day/Half M DS1-
M DS2

M DS2-
M DS3

M DS1-
M DS2

M DS2-
M DS3

M DS1-
M DS2

M DS2-
M DS3

M DS1-
M DS2

M DS2-
M DS3

1/1 8.34 0.08 3.26 0.3 8.62 3.6 1.02 2.84

1/2 6.56 6.76 27.18* 12.3 102.9* 18.84* 35.7* 5.08

2/1 83.3* 13.8 71.28* 18.96* 92.78* 9.94 86.16* 0.64

2/2 140.44* 2.56 69.94* 6.54 136.76* 30.16* 117.28* 3.62

3/1 214.98* 9.42 78.76* 22.04* 183.38* 29.14* 109.98* 0.38

3/2 174* 11.14 98.18* 35.86* 140.16* 21.1* 80.2* 4.8

4/1 244.36* 28.54* 116.86* 37.6* 155.02* 35.3* 74.56* 11.92*

4/2 146.22* 22.7* 149.28* 30.82* 196.44* 33.72* 80.36* 22.78*

5/1 151.78* 23.48* 116.8* 38.18* 113.6* 41.34* 80.48* 30.94*

5/2 201.98* 14.5 147.96* 34.34* 193.02* 39.92* 143.76* 18*

6/1 -- -- -- -- -- -- 132.96* 37.92*

6/2 -- -- -- -- -- -- 155.54* 33.08*

preferences of the participants.  Finally, the new
experim ental design proposed provides a m ethod for 
further testing the properties of dim ensions (cues) that 
hum ans prefer (or are constrained?) to use.
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