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The discovery of scientific knowledge is one of the
most challenging tasks that confront humans, yet cogni-
tive science has made considerable progress toward ex-
plaining this activity in terms of familiar cognitive pro-
cesses like heuristic search (e.g., Langley et al., 1987). A
main research theme relies on selecting historical discov-
eries from some discipline, identifying data and knowl-
edge available at the time, and implementing a computer
program that models the processes that led to the scien-
tists” insights. The literature on computational scientific
discovery includes many examples of such studies, but
initial work in this tradition had some significant draw-
backs, which we address in this symposium.

One such limitation was that early research in law dis-
covery ignored the influence of domain knowledge in
guiding search. For example, Gordon et al. (1994) noted
that attempts to fit data from solution chemistry in the
late 1700s took into account informal qualitative models
like polymerization and dissociation. They have devel-
oped Hume, a discovery system that draws on such qual-
itative knowledge to direct its search for numeric laws.
Hume utilizes this knowledge not only to rediscover laws
found early in the history of solution chemistry, but also
to explain, at an abstract level, the origins of other rela-
tions that scientists proposed and later rejected.

Early discovery research also downplayed the role of
diagrams, which occupy a central place in many aspects
of science. For example, Huygens’ and Wren’s first pre-
sentations of momentum conservation took the form of
diagrams, suggesting they may have been instrumental
in the discovery process. In response, Cheng and Simon
(1992) have developed Huygens, a computational model
for inductive discovery of this law that uses a psycho-
logically plausible diagrammatic approach. The system
replicates the discovery by manipulating geometric dia-
grams that encode particle collisions and searching for
patterns common to those diagrams. The quantitative
data given to the system are equivalent to those available
at the time of the original discovery.

Another challenge concerns the computational model-
ing of extended periods in the history of science, rather
than isolated events. To this end, Kocabas and Langley
(1995) have developed BR4, an account of theory revi-
sion in particle physics that checks if the current theory
is consistent (explains observed reactions) and complete
(forbids unobserved reactions), revises quantum values

and posits new particles to maintain consistency, and in-
troduces new properties to maintain completeness. BR-4
models, in abstract terms, major developments in par-
ticle physics over two decades, including the proposal
of baryon and lepton numbers, postulation of the neu-
trino, and prediction of numerous reactions. Background
knowledge about symmetry and conservation combine
with data to constrain the search for an improved the-
ory in a manner consistent with the incremental nature
of historical discovery.

We hope this symposium will encourage additional re-
search that extends our ability to model historical scien-
tific discoveries in computational terms.
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Introduction

Cognitive mechanisms are shaped by their environments,
both through evolutionary selection across generations
and through learning and development within lifetimes.
But by making decisions that guide actions which in turn
alter the surrounding world, cognitive mechanisms can
also shape their environments in turn. This mutual shap-
ing interaction between cognitive structure and environ-
ment structure can even result in coevolution between the
two over extended periods of time. In this symposium,
we explore how simple decision heuristics can exploit
the information structure of the environment to make
good decisions, how simple language-learning mecha-
nisms can capitalize on the structure of the “spoken”
environment to develop useful grammars, and how both
sorts of cognitive mechanisms can actually help build the
very environment structure that they rely on to perform
well.

Programme

There will be three talks, as follows:

1. Peter Todd, “Simple Heuristics that exploit environ-
ment structure”,

Traditional views of rational decision making assume
that individuals gather, evaluate, and combine all the
available evidence to come up with the best choice
possible. But given that human and animal minds
are designed to work in environments where informa-
tion is often costly and difficult to obtain, we should
instead expect many decisions to be made with sim-
ple “fast and frugal” heuristics that limit information
use. In our study of ecological rationality, we have
been exploring just how well such simple decision-
making heuristics can do when they are able to exploit
the structure of information in specific environments.
This talk will outline the research program pursued by
the Center for Adaptive Behavior and Cognition as de-
veloped in the book, Simple Heuristics That Make Us
Smart (Oxford, 1999), and highlight how the match
between cognitive mechanism structure and environ-
ment structure allows the Recognition heuristic and
Take The Best heuristic to perform on par with tra-
ditionally rational decision mechanisms.

2. Simon Kirby, “The Iterated Learning Model of
Language Evolution”,

The past decade has seen a shift in the focus of re-
search on language evolution away from approaches
that rely solely on natural selection as an explanatory
mechanism. Instead, there has been a growing ap-
preciation of languages (as opposed to the language
acquisition device) as complex adaptive systems in
their own right. In this talk we will present an ap-
proach that explores the relationship between biolog-
ically given language learning biases and the cultural
evolution of language. We introduce a computation-
ally implemented model of the transmission of linguis-
tic behaviour over time: the Iterated Learning Model
(ILM). In this model there is no biological evolution,
natural selection, nor any measurement of the suc-
cess of communication. Nonetheless, there is signifi-
cant evolution. We show that fully syntactic languages
emerge from primitive communication systems in the
ILM under two conditions specific to Hominids: (i) a
complex meaning space structure, and (ii) the poverty
of the stimulus.

3. Peter Todd, Simon Kirby and Jim Hurford, “Putting
the Models Together: how the environment is shaped
by the action of the recognition heuristic”,

To explore how cognitive mechanisms can exert a
shaping force on their environment and thus affect
their own performance, we begin by considering the
actions of a very simple cognitive mechanism, the
recognition heuristic for making choices. This heuris-
tic specifies that when choosing between two options,
one of which is recognized and one not, the recognized
option should be selected. The recognition heuristic
makes good choices, in environments where recogni-
tion is correlated with the choice criterion. Many natu-
ral environments have this structure, but such structure
can also be “built”: By using the recognition heuris-
tic, agents can create an environment in which some
objects are much more often and “talked about” and
recognized than others. An agent-based simulation is
used to show what behavioral factors affect the emer-
gence of this environmental structure.
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The issue of the nature of the processes or “mechanisms” that
underlie scientific cognition is a fundamental problem for
cognitive science. A rich and nuanced understanding of
scientific knowledge and practice must take into account how
human cognitive abilities and limitations afford and constrain
the practices and products of the scientific enterprise.
Reflexively, investigating scientific cognition opens the
possibility that aspects of cognition previously not observed
or considered will emerge and require enriching or even
altering significantly current understandings of cognitive
processes.

The Baby in the Lab Coat: Why child
development is an inadequate model for
understanding the development of science

Stephen P. Stich, Department of Philosophy, Rutgers
University

In two recent books and a number of articles, Alison Gopnik
and her collaborators have proposed a bold and intriguing
hypothesis about the relationship between scientific cognition
and cognitive development in childhood. According to this
view, the processes underlying cognitive development infants
and children and the processes underlying scientific cognition
are identical. One of the attractions of the hypothesis is that, if
it is correct, it will unify two fields of investigation — the
study of early cognitive development and the study of
scientific cognition — that have hitherto been thought quite
distinct, with the result that advances in either domain will
further our understanding of the other. In this talk we argue
that Gopnik’s bold hypothesis is untenable. More
specifically, we will argue that if Gopnik and her
collaborators are right about cognitive development in early
childhood then they are wrong about science. The minds of
normal adults and of older children, we will argue, are more
complex than the minds of young children, as Gopnik
portrays them. And some of the mechanisms that play no role
in Gopnik’s account of cognitive development in childhood
play an essential role in scientific cognition.

Scientific Cognition as Distributed
Cognition

Ronald N. Giere, Center for Philosophy of Science,
University of Minnesota

I argue that most important cases of cognition in
contemporary science are best understood as examples of
distributed cognition. Here I focus exclusively on the
acquisition of new knowledge as the paradigm of scientific
cognition. Scientific cognition, then, does not reduce to mere
distributed computation. The simplest case is that in which

two people cooperate in acquiring some knowledge that is not
directly acquired by either one alone. It is even possible that
neither person could physically perform the task alone. This
is an example of what has been called “socially shared
cognition” (Resnick) or “collective cognition” (Knorr). The
most elaborate example is the case of experimental high-
energy physics at CERN, as described by the sociologist,
Karin Knorr in her recent book, Epistemic Cultures. 1 go
beyond Knorr’s analysis to include the particle accelerator
and related equipment as part of a distributed cognitive
system. So here the cognition is distributed both among both
people and artifacts. Such artifacts as diagrams and graphics
and even abstract mathematical constructions are also
included as components of distributed cognitive systems.
This makes it possible to understand the increasing power of
science since the seventeenth century as in large measure due
to the creation of increasing powerful cognitive systems, both
instrumental and representational.

The Cognitive Basis of Model-based
Reasoning in Science

Nancy J. Nersessian, Program in Cognitive Science, Georgia
Institute of Technology

Although scientific practice is inherently “socially shared
cognition,” the nature of individual cognitive abilities and
how these constrain and facilitate practices still needs to be
figured into the account of scientific cognition. This
presentation will focus on the issue of the cognitive basis of
the model-based reasoning practices employed in creative
reasoning leading to conceptual change across the sciences. I
will first locate the analysis of model-based reasoning within
the mental modeling framework in cognitive science and then
discuss the roles of analogy, visual representation, and
thought experimenting in constructing new conceptual
structures. A brief indication of the lines along which a fuller
account of how the cognitive, social, and material are fused in
the scientist’s representations of the world will be developed.
That the account needs to be rooted in the interplay between
the individual and the communal in the model-based
reasoning that takes place in concept formation and change.
Modeling is a principal means through which a scientist
transports conceptual resources drawn from her wider cultural
milieu into science and transmits novel representations
through her community. Scientific modeling always takes
place in a material environment that includes the natural
world, socio-cultural artifacts (stemming from both outside of
science and within it), and instruments devised by scientists
and communities to probe and represent that world.

Symposium Discussant: Dedre Gentner, Department of
Psychology, Northwestern
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The Focus of the Symposium

The role of implicit learning in skill acquisition and the
distinction between implicit and explicit learning have
been widely recognized in recent years (see, e.g., Re-
ber 1989, Stanley et al 1989, Willingham et al 1989,
Anderson 1993), Although implicit learning has been
actively investigated, the complex and multifaceted in-
teraction between the implicit and the explicit and the
importance of this interaction have not been universally
recognized; to a large extent, such interaction has been
downplayed or ignored, with only a few notable excep-
tions. ! Research has been focused on showing the lack
of explicit learning in various learning settings (see espe-
cially Lewicki et al 1987) and on the controversies stem-
ming from such claims. Similar oversight is also evident
in computational simulation models of implicit learning
(with few exceptions such as Cleeremans 1994 and Sun
et al 2000).

Despite the lack of studies of interaction, it has been
gaining recognition that it is difficult, if not impossible,
to find a situation in which only one type of learning is
engaged (Reber 1989, Seger 1994, but see Lewicki et
al 1987). Our review of existing data has indicated that,
while one can manipulate conditions to emphasize one or
the other type, in most situations, both types of learning
are involved, with varying amounts of contributions from
each (see, e.g., Sun et al 2000; see also Stanley et al 1989,
Willingham et al 1989).

Likewise, in the development of cognitive architec-
tures (e.g., Rosenbloom et al 1993, Anderson 1993), the
distinction between procedural and declarative knowl-
edge has been proposed for a long time, and advocated
or adopted by many in the field (see especially Ander-
son 1993). The distinction maps roughly onto the dis-
tinction between the explicit and implicit knowledge,
because procedural knowledge is generally inaccessible
while declarative knowledge is generally accessible and
thus explicit. However, in work on cognitive architec-
tures, focus has been almost exclusively on “top-down”
models (that is, learning first explicit knowledge and
then implicit knowledge on the basis of the former), the
bottom-up direction (that is, learning first implicit knowl-

IBy the explicit, we mean processes involving some form
of generalized (or generalizable) knowledge that is consciously
accessible.

edge and then explicit knowledge, or learning both in
parallel) has been largely ignored, paralleling and reflect-
ing the related neglect of the interaction of explicit and
implicit processes in the skill learning literature. How-
ever, there are a few scattered pieces of work that did
demonstrate the parallel development of the two types of
knowledge or the extraction of explicit knowledge from
implicit knowledge (e.g, Willingham et al 1989, Stanley
et al 1989, Sun et al 2000), contrary to usual top-down
approaches in developing cognitive architectures.

Many issues arise with regard to the interaction be-
tween implicit and explicit processes, which we need to
look into if we want to better understand this interaction:

e How can we best capture implicit processes computa-
tionally? How can we best capture explicit processes
computationally?

e How do the two types of knowledge develop along
side each other and influence each other’s develop-
ment?

e Is bottom-up learning (or parallel learning) possible,
besides top-down learning? How can they (bottom-up
learning, top-down learning, and parallel learning) be
realized computationally?

e How do the two types of acquired knowledge interact
during skilled performance? What is the impact of that
interaction on performance? How do we capture such
impact computationally?

Titles of the Talks

Axel Cleeremans: “Behavioral, neural, and computa-
tional correlates of implicit and explicit learning”

Zoltan Dienes: “The effect of prior knowledge on im-
plicit learning”

Bob Mathews: “Finding the optimal mix of implicit and
explicit learning”

Ron Sun: “The synergy of the implciit and the explicit”



